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Generalized latent variable modeling was used to examine the relationship 

between working memory and academic achievement. The contributions of two working 

memory mechanisms that are involved in a wide variety of working memory tasks, 

namely short-term storage (STS) and generalized attention control (GAC) were 

examined. The contributions of two working memory mechanisms that are specific to 

two well-established measures of working memory (Digit Span and Letter-Number 

Sequencing), namely Backward Ordering (BO) and Mental Sorting (MS), were also 

examined. The contribution of these working memory mechanisms as a whole was 

additionally evaluated, and compared to the contribution of traditional measures of 

intelligence. 

Mechanisms that are common across multiple working memory tasks 

(specifically, STS and GAC) were found to make an important contribution to both 

intelligence and achievement, while task-specific factors (BO and MS) were not. 

Furthermore, in this study the combined working memory factors were clearly better 

predictors of achievement than traditional measures of intelligence. At the same time, 

results of this study indicate that both of these traditional measures of intelligence make 
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significant and unique contributions to academic achievement above and beyond those of 

the working memory factors. 

The most unique aspect of this study was the examination of the relationship 

between independent latent working memory factors and a latent achievement factor. 

Unlike previous studies that did not differentiate between the role of storage and the role 

of attention control, this study was able to provide more precise information about the 

nature of working memory’s contribution. Thus, it was possible to discern that the 

general factors of GAC and STS both made substantial unique contributions and that the 

contributions of the more specific mechanisms were much lesser. The theoretical and 

practical implications of these findings are discussed. 
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CHAPTER ONE 

REVIEW OF RELEVANT LITERATURE 

Brief Historical Overview of Working Memory 

 Working memory, “ a temporary storage system under attention control that 

underpins our capacity for complex thought” (Baddeley, 2007, p 1) has a relatively short 

history in psychology. William James (1890) was among the first to distinguish between 

different types of memory in his conception of a short-term “primary memory” that 

stored consciousness with very little effort, and a “secondary memory” that could store 

information permanently, but only with deliberate effort.  

Around the same time, the first systematic investigations in what would become 

the field of differential psychology were occurring.  Joseph Jacobs is credited with 

developing the forward digit span task, in which participants are asked to recall a series 

of numbers in the order of presentation, in order to quantify the limits of memory 

(Hannary, 1998).  Among his findings was a relationship between age and storage 

capacity, as Jacobs reported that older children were able to retain longer spans of 

numbers than younger ones. Meanwhile, Francis Galton included a forward digit span 

task in his battery of tests administered to thousands on people of all ages, in an attempt 

to map out the mean and range of human mental abilities (Jensen, 2006). 

Alfred Binet used a similar method to study memory, but his stimuli were 

unrelated words and sentences rather than numbers. Peterson (1925) explains Binet’s 

interest in “immediate memory” thus: “by means of memory tests one can indirectly 

study the operations and nature of higher mental processes as discrimination, attention, 

and intelligence” (p. 125). 
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Digit span and sentence span tasks were both included in Terman’s 1916 

translation and revision of the Binet-Simon intelligence scale, in which a distinction 

between forward and backward digit span items was first made. The forward span items 

were to be given to all children, while the backward items were intended only for those 

over the age of seven (Berliner, 2006). Terman noted that the backward span test was a 

superior indicator of intelligence than the forward test as “it is less mechanical and makes 

a much heavier demand on attention” (p. 208).  The role of backward and forward span 

tasks continues until the present day, with their inclusion in all subsequent revisions of 

the Stanford-Binet scales as well as in all editions of the Weschler Intelligence Scale for 

Children, the Weschler Intelligence Scale for Adults and the Woodcock Johnson.  

The role of working memory has been investigated in all three of the major 

traditions of the psychometric study of intelligence (Heitz, Unsworth, & Engle, 2005). 

The first tradition is associated with Spearman, and emphasizes the concept of g, a single 

intellectual ability underlying performance on a wide variety of tests. The second, the 

group factors tradition primarily associated with Thurstone, posits a number of specific 

intelligences or “primary mental abilities”, such as reasoning and perceptual speed. The 

third view falls somewhere in between, and includes Cattell’s well-known hierarchical 

model which places g atop two major divisions: fluid and crystallized intelligence.  

Spearman (1927) initially stated that intelligence was a function of education and 

explicitly not a function of “bare retention” (p. 285); however, he later revised his 

thinking based on the very high correlations he found between certain memory tests and a 

general ability factor, g. Meanwhile, in the group factors tradition, Kelley (1928) found 

that four working memory tests correlated well with a general ability factor (up to r = 
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.56) but also with a separate working memory factor (up to r = .56), leading to the general 

conclusion that the two were related. Thurstone also included “associative memory” as 

one of his seven “primary mental abilities”, although he used tests of word- and picture- 

recall, rather than span tasks (Sternberg, 2002), while Guildford (1925) included 24 

distinct memory factors in his 120-component model of intelligence. 

In the third school, Cattell (1943) proposed a distinction between crystallized 

intelligence (Gc) and fluid intelligence (Gf), with the former associated with education 

and acquired experience and the latter associated with biologically-endowed skills and 

abilities. Horn (1968) investigated the role of memory span in these constructs, and 

reported no correlation between memory and Gc but a substantial correlation (r=.50) with 

Gf.  

Around the same time, multi-component views of memory were re-surfacing 

amongst researchers outside the psychometric tradition. In 1949, Donald Hebb proposed 

a two-component view of memory, with short-term memory associated with temporary 

electrical activity in the brain, and long-term memory associated with lasting changes to 

the brain (Baddeley, 2007). Around the same time, information-processing theories were 

beginning to influence memory research, including George Miller’s famous “7+/- 2” 

work on short-term capacity. One of the most influential models of memory was the 

linear conception of Atkinson and Shiffrin (1968), which included a sensory store (for all 

incoming information), a short-term store (for incoming information that is attended to), 

and a long-term store (for information in the short-term store that has been rehearsed and 

therefore retained).  
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In the early 1970s, Baddley and Hitch developed a three-componential view of 

short-term memory, which they called “working memory.” From a series of experiments 

in which they paired a standard span task with a concurrent reasoning, learning, or 

comprehension task, they found that while response time on the latter task increased with 

span length, the error rate was relatively unchanged (Baddeley, 2007). From this they 

concluded that multiple systems were in operation, and described a general mechanism 

called the central executive overseeing a number of separate “attention control” (p.12) 

processes as well as two content-specific storage systems: the phonological loop for 

aurally-presented information, and the visuo-spatial sketchpad for visual and spatial 

information. Most subsequent research into individual differences in working memory 

has been based on this dynamic, multi-component model. 

Predictive Power of Working Memory 

Working memory derives its importance in differential psychology from its status 

as a strong predictor of intelligence. A number of studies in recent years have indicated 

that working memory has an important role as part of the cognitive basis of intelligence. 

Research indicates that it is a powerful predictor of psychometric g (Ackerman, Beier, & 

Boyle, 2005; Colom, Rebollo, Palacios, Juan-Espinosa, & Kyllonen, 2004; Luo, 

Thompson, & Detterman, 2006; Schweizer & Moosbrugger, 2004), reasoning ability or 

fluid intelligence (Buehner, Krumm & Pick, 2005: Engle, Tuholski, Laughlin, & 

Conway, 1999: Fry & Hale, 1996; Kane & Engle, 2002; Kyllonen & Christal, 1990; 

Salthouse, Babcock, Mitchell, Palmon & Skovronek, 1990;  Miyake, Friedman, 

Rettinger, Shah, and Hegarty, 2001; Süβ, Oberauer, Wittman, Wilhelm & Schulze, 2002), 

verbal ability (Cantor, Engle & Hamilton, 1991; Conway & Engle, 1996; Daneman & 
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Carpenter, 1980), and math ability (Kyttälä & Lehto, 2008). The magnitude of these 

correlations led many to conclude that working memory and intelligence are highly 

related (Conway, Kane, & Engle, 2003) if not near-identical constructs (Kyllonen & 

Christal). On the other hand, others have argued that the strength of the relationship has 

been overstated (Ackerman et al., 2005). A brief overview of key studies and their 

findings follows. 

Tillman, Nyberg, and Bohlin (2008) investigated how the working memory 

components of storage and “executive” attention in both verbal and visuospatial domains 

relate to fluid intelligence. Their participants were 196 Swedish children aged between 6 

and 13, and they partialled out shared variance to distinguish WM from STS tasks. Their 

predictors were one verbal (word span) and one visuospatial (picture span) storage tasks, 

and one verbal (Children’s Size Ordering Task) and one visuospatial (picture span with a 

classification component) working memory task, while the sole dependent variable was 

Raven’s Progressive Matrices. Their multiple regression analysis found that all four task 

types made significant unique contributions, with the verbal STS task explaining the 

largest proportion of Raven’s variance.  

Daneman and Carpenter (1980) were among the first differential psychologists to 

examine correlates to performance on working memory tasks, reporting a strong 

relationship between performance on a reading span task (in which participants were to 

recall the last word of a sentence) and on a reading comprehension test. Although their 

reported correlation is impressive (r=.72), their work has been criticized for the small size 

of the sample used, and possible inflation due to shared content and method variance 
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(Ackerman et al., 2005). Indeed, later studies (reviewed in Baddeley, 1986) that used 

span tasks other than reading span reported lesser correlations. 

Daneman and Merikle (1996) conducted a meta-analysis of studies investigating 

the relationship between short-term memory and working memory indicators and 

indicators of language comprehension. Their analysis included 77 different samples of 

vastly divergent age ranges, although those who were classified as poor readers were 

excluded. Their analysis separated simple storage (i.e. span) measures from working 

memory measures that additionally required performance of another task, as well as 

“verbal” versus numerical tasks. They reported correlations with comprehension of .28 

and .14 for verbal storage and numerical storage respectively; correlations with 

comprehension of .14 and .48 were found for verbal working memory and numerical 

working memory respectively. Thus, their analysis provided evidence that something in 

addition to simple storage was responsible for the relationship between working memory 

and measures of achievement. 

Deary, Strand, Smith, and Fernandes (2007) conducted an unusually extensive 

investigation into the relationship between intelligence and educational achievement that 

included data from more than 70,000 English schoolchildren. In this prospective 

longitudinal study, intelligence test scores obtained at age 11 were compared with 

academic achievement scores obtained five years later. A factor analysis of the Cognitive 

Abilities Test found that the first factor g accounted for about 70% of the variance, while 

a residual orthogonal verbal factor could also be obtained. Subsequently, the authors 

investigated correlations between the g factor scores and the participants’ scores on the 

General Certificate of Secondary Education (GCSE) achievement tests. They found 
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significant, positive correlations between g factor scores and all subjects, including 0.67 

for English and 0.77 for mathematics, as well as 0.69 for the overall GSCE score. 

This was followed by structural equation modeling to investigate the relationship 

between latent g and a latent achievement factor. The authors reported there was a .81 

correlation between the two factors, and that the achievement factor accounted for 72% 

of the variance of the GCSE indicators. This was followed by general linear modeling 

(ANCOVA) to determine the relative contribution of g and the verbal factor. They 

discovered that g accounted for 49% of achievement variance, while the verbal factor 

explained an addition 3% above and beyond that. 

An important real-world criterion in the United Kingdom is whether students 

obtain at least five GCSE scores within the A-C range, as this determines eligibility for 

further education and training. Using logistic regression, the researchers found that of the 

students who obtained at least a mean g factor score, 58% met this criterion. Furthermore, 

91% who were one or more standard deviations above the mean met the criterion, while 

only 16% of those who were one standard deviation or below did the same. The Receiver 

Operating Characteristic curve for this analysis covered an area of 0.859, indicating that 

the g factor scores were good predictors. Therefore, these analyses were consistent in 

showing that cognitive ability tests are strong predictors of later academic achievement. 

In two studies, Luo, Thompson, and Detterman (2003) compared the strength of 

working memory as a predictor of academic achievement to the strength of indices of 

fluid and crystallized intelligence. Their first study analyzed the Woodcock-Johnson III 

(WJ III) normative data using the Total Achievement scores as the criterion, with 

Comprehension Knowledge, Fluid Reasoning and Working Memory clusters among the 



 8 

independent variables. In multiple regression analyses, they found that the Fluid 

Reasoning cluster alone provided no significant unique contribution. In a series of 

structural equation models, their Fluid Intelligence factor provided the weakest 

explanatory power, while their working memory factor explained about as much of the 

variance of Achievement as did their Crystallized Intelligence factor. 

In their second study, Luo et al. (2003) used elementary school pupils of a range 

of ability levels. The participants included four working memory tasks (digit span as well 

as other storage and processing tasks), along with the Weschsler Intelligence Scale for 

Children Third Edition (WISC-III) Verbal, Performance and Full IQ indices. Their 

criterion this time was a battery of language, math, and reading tests. Using a similar 

series of multiple regression and structural equation modeling analyses, they found that 

all predictors made substantial contributions, with processing speed notably weaker than 

the others. The authors conclude that fluid intelligence may be somewhat redundant when 

used with other predictors (such as working memory), and of insufficient power when 

used on its own. 

Rohde and Thompson (2005) also addressed the relative importance of traditional 

intelligence measures (in this case, Raven’s Progressive Matrices and the Mill 

Vocabulary Scales) versus specialized (working memory, processing speed, and spatial 

ability) cognitive skills in predicting academic achievement. Using separate multiple 

regression analyses to look at three different criterion variables, (WRAT III, college 

GPA, and SAT scores), they found no significant unique contribution from working 

memory to any of the criterions. However, some weaknesses in the study should be 

noted. First, only a single measure of working memory (operation span) was included in 
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the study; therefore, task-specific variance may be diluting the strength of the correlation. 

Second, as the authors acknowledge, their participants were drawn exclusively from a 

“gifted” college population; therefore, more modest correlations are to be expected than 

if a wider range of ability levels had been included. This is due not only to restriction of 

range, but to the established phenomenon that correlations between all kinds of ability 

tests are highest at the low end of the ability continuum (Detterman & Daniel, 1989; 

Jensen, 2003). 
Mechanisms of Working Memory 

 Based on Baddeley’s multi-componential model of working memory, research has 

also sought to determine which of the components of working memory are most 

important in explaining the relationship with cognitive abilities. Many studies addressed 

this issue by distinguishing between tasks that require storage and those that require an 

additional processing component in addition to storage. Short-term storage (STS) tasks 

are generally simple span tasks, in which items from a stimulus list are individually 

presented for later recall. More complex span tasks also involve the serial presentation of 

a list, but have an additional processing component; for example, operation span requires 

the participant to solve simple arithmetical problems while remembering the list (Conway 

et al., 2003). Such tasks that require the participant to shift attention between the stimulus 

list and a processing task are thus said to be WM tasks, in distinction to STS tasks that do 

not have any such attention-shifting requirement (Engle et al., 1999).  

 By selecting sets of tasks in this manner, Engle et al. (1999) tried to address the 

question of whether working memory is more predictive of fluid intelligence that short-

term memory. The authors’ basic methodology was to compare the fits of one-factor 
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(STS) and two-factor (STS and working memory) models, on the assumption that a 

superior fit for the two-factor model would reflect that attention control is the mechanism 

responsible for the observed relationship between working memory and fluid 

intelligence. The authors did indeed find that the two-factors models they tested provided 

a superior fit, but their results are inconclusive, as their models do not differentiate 

between different components of working memory. Their models include either 

correlated STS and working memory exogenous factors, or STS and working memory 

factors defined by orthogonal indicator sets. Although the authors hypothesize that 

“working memory capacity = STM capacity + central executive or controlled attention + 

the error of measurement” (p. 313), this relationship is not directly represented in any of 

their models because no model actually breaks down working memory into these three 

factors. This absence of independent factors means that the contributions of STS and 

attention control as two additive predictors cannot be directly determined. Similar 

methodology was later used to address the same question by Cantor et al. (1991) and 

Conway, Cowan, Bunting, Therriault, and Minkoff (2002), and consequently suffers from 

the same drawbacks. 

Oberauer, Süß, Schulze, Wilhelm, and Wittmann (2000) used a taxonomic 

approach to studying working memory in their classification of 23 working memory tasks 

based on three stimulus dimensions (verbal, numerical, and spatial-figurative) and 

four“functions” (simultaneous storage and transformation, supervision, and 

coordination). These tests were administered to 128 participants along with a battery of 

45 intellectual ability tests that were divided into reasoning, spatial, and numerical 

composites. They derived three factors from the working memory tests: a 
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Verbal/Numerical factor that included the functions of simultaneous storage and 

transformation and coordination, a Spatial-Figural factor that included the same 

functions, and a final factor that included those supervisory functions that required speed. 

In terms of correlations with the intellectual ability tests, they found the strongest 

correlation (.61) between the third working memory factor and a composite of the speed 

test. Relatively strong correlations were also found between the second factor and all 

three intelligence composites, and between the first factor and the numerical and 

reasoning composites. These results suggested that there was not a simple relationship 

between working memory and intelligence, but rather differential relationships between 

the various mechanisms and content areas. 

A later study by the same authors (Süß, Oberauer, Wittmann, Wilhelm, & 

Schulze, 2002) used the same working memory model and a model of intelligence that 

encompassed three content areas (verbal, figural, number) and three “operations” (speed, 

memory, creativity, and reasoning).  Additionally, they attempted to control for 

personality factors, subjective stress, and computer skills by checking for significant 

correlations between relevant measures for these possible mediators and all working 

memory and ability measures administered; none were obtained. Consistent with the 

previous study and Kyllonen and Christal (1990), the authors found that working memory 

generally was related to intelligence and particularly reasoning. As in the previous study, 

they reported that the storage and processing plus co-ordination factor was the strongest 

predictor of intelligence. 

Based on the Oberauer model, Krumm, Schmidt-Atzert, Buehner, Ziegler, 

Michalczyk, and Arrow (2009) investigated the relationships among short-term storage, 
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working memory (involving storage and processing of different stimuli), sustained 

attention (involving storage and processing of the same stimuli), executive function 

(including updating, inhibition, and shifting tasks), processing speed, and reasoning  -- 

categories that clearly involve a high degree of overlap. While they were able to partial 

out processing speed and storage factors, other sources of shared variance were not 

identified using this paradigm. Thus, their conclusion that it is only storage (and not other 

factors associated with working memory) that predicts reasoning does not reflect the 

possible contribution of other generalized working memory mechanisms.  Additionally, 

the fact that their sample includes only participants from a selective college suggests that 

the relationships found in this study may be weaker than if a more varied sample had 

been used.  

 Kane et al. (2004) sought to investigate the generalizability of working memory 

mechanisms through a design that separated verbal and visual-spatial content and 

included working memory tasks and their “short-term memory” analogues. Their short-

term memory latent factor was defined by tasks that did not require the participant to shift 

attention from a stimulus list to be remembered, while the WM tasks required the 

participant to move between the stimulus list and a distracting processing task, such as 

arithmetic. Using structural equation modeling, they found that a one-factor (ie. 

generalized) working memory model fit their data (collected from adults of varied ability 

levels) better than a two-factor model with separate verbal and visualspatial factors. In 

contrast, they found the reverse was true for short-term memory. Additionally, they found 

that working memory was a much stronger predictor of “reasoning” (as defined by a 

range of verbal, visual-spatial, and inductive reasoning tasks) than was shot-term 



 13 

memory. the authors claim their study provides support for Baddeley’s working memory 

model, with its central executive as a generalized mechanism, and two content-specific 

storage mechanisms (the phonological loop and the visuospatial sketchpad).  In 

interpreting their results, the authors suggest that the short-term memory factor and the 

working memory factor (which are highly correlated) share variance due to attention 

control as well as storage. More specifically, they posit that working memory tasks 

primarily capture domain-general attention and domain-specific storage secondarily, 

while short-term memory tasks capture primarily domain-specific storage and 

secondarily domain-general attention. The implication that the variance shared by 

working memory and short-term memory tasks indicates that there is no pure (ie. domain-

specific) working memory task is not substantiated by their study, which does not 

distinguish the content variability from the storage variability in their storage factor. 

Therefore, another possible explanation for the correlation between working memory and 

storage tasks is that all working memory tasks share short-term memory. 

  Within the field of differential psychology, the vast majority of recent 

investigations into the role of WM in intelligence have used latent variable analyses. This 

methodology includes structural equation modeling (SEM), in which causal paths 

between latent variables are modeled, and confirmatory factor analysis (CFA), which 

does not include causal paths. Latent variable analysis involves the administration of 

multiple measures for each latent construct hypothesized to a large number of 

participants. Latent factors can then be derived from the covariance among tasks said to 

tap the same construct, while at the same time task-specific variance is removed. 

Statistically, the aim of a latent variable model is to account for all of the correlations 
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found among the measures included. A reproduced correlation matrix is generated based 

on the relations among the measures specified in the model, and this is then compared to 

the observed correlation matrix (Bollen, 1989). If the two are similar, the model is said to 

be a good fit. 

Kyllonen and Christal (1990) were among the first to investigate the relationship 

between working memory and cognitive ability at the latent level.  They conducted four 

different studies with military recruits, and administered working memory batteries 

(including digit span, and mental ordering tasks) and reasoning batteries, including 

subtests from the Armed Services Vocational Aptitude Battery (ASVAB), arithmetic and 

grammatical tasks. The authors acknowledge a slighter theoretical base on which to chose 

working memory tasks than for reasoning tasks, and “concede to a certain degree of 

arbitrariness”  (p. 392) in their design of working memory tasks. Indeed, while a 

“grammatical reasoning” task is classified as a working memory task in one study, it is 

classed as a reasoning task in another. Both construct and content validity may be 

compromised as their latent factor may include a great deal of task-specific variance and 

fail to include relevant aspects of working memory. Additionally, the fact that their 

design presents working memory as an undifferentiated construct makes it impossible to 

identify the underlying mechanisms that account for the impressive correlations estimated 

(r=.80-.88) between working memory and reasoning.  Although the authors’ have also 

been criticized for prematurely concluding that working memory and reasoning and 

nearly identical constructs (Ackerman et al., 2005), this study was the first to attempt a 

“purified” view of the constructs, and included an unusually wide range of ability levels 

among their participants. 
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For a number of reasons, task selection is a particular problem when studying 

working memory. Beyond span tasks there is no much agreement on what constitutes a 

working memory task, it is difficult to find or create the range of tasks needed for a 

structural equation model, and most tasks require multiple mechanisms that are difficult 

to disentangle. One possible option is to construct something similar to a multi-trait, 

multi-method (MTMM) matrix in which a range of general and specialized mechanisms 

are included. However, this may be impossible to achieve in practice because-- with the 

possible exception of simple span tasks—very few working memory tasks involve only a 

single mechanism. For example, it is difficult to imagine a task that requires the 

mechanism of attention control and the specialized mechanism of backward ordering, but 

not the additional mechanism of STS. Many mechanisms are intrinsically intertwined in 

tasks in this manner. In addition, Kenny and Kashy (1992) have cautioned against the use 

of the MTMM matrix with confirmatory factor analyses. Matrices that use a similar 

paradigm, such as those that include multiple mechanisms and multiple executive 

operations, will experience the same problems with model estimation that they describe. 

Almost all previous work into the relationship between working memory and 

reasoning or intelligence has been at the task level. There are many studies in which the 

relationship is evaluated at the level of observed variables (Conway et al., 2003; Kane, 

Hambrick, Tuholski, Wilhelm, Payne, & Engle, 2004); as previously noted, questions 

relating to reliability and error are unavoidable in this approach. Furthermore, the 

information provided by these kinds of studies is limited. Most working memory tasks 

must be considered an amalgam of domain- or task- specific (e.g., verbal or arithmetic) 

processes and more general processes (e.g., storage). In fact, Oberauer, Schulze, 
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Wilhelm, and Süβ (2005) write that there are four sources of variance in any working 

memory task; variance “specific to the task paradigm” (e.g., storage), variance of the 

working memory construct as a whole, content-related variance (e.g., spatial skills), and 

method variance (e.g., computer administration). While the number of sources of 

variance is arguable, failure to distinguish between them severely limits our 

understanding of working memory. 
The findings with regard to the relationship between working memory and the 

various omnibus measures of intelligence have undoubtedly been inconsistent. In fact, 

when Ackerman, Beier and Boyle (2005) conducted a meta-analysis of the relevant 

studies, they found an average correlation of only.479, with a range of .21 to .55. This 

range is much lower than the very strong correlations reported in some studies, such as 

seminal work by Kyllonen and Christal (1990), in which they reported correlations of 

between .8 and .9 between working memory and reasoning based on four investigations. 

One general pattern is that studies of observed measures produce much lower correlations 

than do latent variable analyses, and this is generally explained in terms of the reliability 

of the observed measures (reflecting common variance) and error variance (random 

variation) which are corrected for in latent variable analyses (Bryant & Yarnold, 1995). 

At the same time, the legitimacy of the correction made in the process of latent 

variable analyses may reasonably be called into question by the magnitude of the 

discrepancy. These corrections are based on assumptions of multivariate normality and 

linearity (Klem, 2000) that may be violated when dealing with studies of individual 

difference in cognitive ability. As previously noted, there is some evidence that 

correlations among cognitive tests of various kinds are appreciably stronger for low-
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ability participants than for participants of higher ability levels (Detterman & Daniel, 

1989; Facon, 2004; Jensen, 2003), suggesting that a strict linear relationship between 

working memory and intelligence may not apply.  
Generalized Latent Variable Modeling to Study Working Memory 

The term “generalized latent variable modeling” (Skrondal & Rabe-Hesketh, 

2004) encompasses a wide variety of latent variable modeling, including various 

combinations of discrete latent variables (indicating latent population heterogeneity) and 

continuous latent variables, as well as discrete (nominal or ordinally scaled) and 

continuous observed variables. As such, it includes finite mixture modeling, latent class 

modeling, and item response models. Luo, Chen, Zen & Murray (2010) pioneered the use 

of generalized latent variable modeling to explore the multiple cognitive underpinnings 

of working memory tasks, and explore the relationships between these mechanisms and 

traditional intelligence measures. As the current study is an extension of this work, this 

earlier study is described in some detail. 

By analyzing the factor structure of digit span (DS) and letter-number sequencing 

(LNS) items from the Chinese version of the Wechsler Intelligence Scale for Children-

Revised (WISC-R), they identified four independent mechanisms or traits, which they 

called Short-Term Storage (STS), Generalized Attention Control (GAC), Mental Sorting 

(MS), and Backward Ordering (BO). The authors posited that all working memory tasks 

draw on STS capacities to some extent, while GAC is involved in all working memory 

tasks where the individual is required to perform a mental operation in addition to 

maintaining items in memory. Hence, completion of the backward digit span items (BDS) 

requires both STS and GAC mechanisms, while forward digit span items (FDS) requires 
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only STS. As these mechanisms are expected to be instrumental in a wide variety of 

tasks, Luo et al. described them as generalized traits. In addition, they identified the more 

specialized traits of backward ordering (BO) from the BDS items, and mental sorting 

(MS) from the LNS items. The authors proposed that almost all working memory tasks 

require some combination of generalized and specialized traits. In other words, the 

variance found in performance on working memory tasks can typically broken down into 

general (i.e., that which is shared with a variety of working memory tasks) and task-

specific sources.  

In obtaining optimally-fitting models for these tasks, Luo et al. (2010) first 

compared the fit of models with different numbers of continuous latent traits, then 

compared with models that included discrete (ordinal) latent traits. Further refinement of 

models was undertaken by varying the number of levels of discrete latent variables 

specified, and in all cases models that included only discrete latent variables were found 

to provide superior fit to those with continuous latent variables. 

Luo et al. (2010) also addressed both the combined and the differential roles of 

these working memory mechanisms in traditional intelligence measures. Using the 

WISC-R summary scores for the Verbal and Performance indices along with academic 

achievement (Chinese and Mathematics) scores as indicators, he derived a general 

intelligence (g) discrete latent factor. The working memory traits were specified to be 

both independent (uncorrelated) and exogenous such that the unique contribution of each 

trait to general intelligence could be assessed.  

Three methods of evaluation were used to evaluate the contribution of each 

working memory factor. First, the regression weights relating the working memory traits 
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to the g trait were evaluated. Next, a series of nested models in which the contribution of 

one or multiple exogenous traits were constrained to zero were compared in order to 

determine the impact of the zero constraints in terms of model fit. Finally, correlations 

between the posterior trait scores for the working memory factors and the g-factor were 

assessed. The actual process involved in calculating these posterior trait scores as well as 

their theoretical significance is described in detail later in this chapter. 

Based on the above methods of evaluation, Luo et al. (2010) found that that the 

role of the generalized traits of STS and GAC were clear. That is, the parameter estimates 

of each path to g were significant in all models tested, constraining these paths to zero 

resulted in appreciably worse fits, and that Pearson’s r correlations between the factor 

mean scores for each of the generalized traits and g were significant at the 0.01 level.  

However, the role of the specialized traits of BO and MS remained somewhat 

inconclusive. Parameter estimates of the paths from these factors to the g-factor indicated 

that the paths were significant at 0.01, and significant correlations were found between 

factor mean scores of the g-factor and the specialized working memory traits. Subsequent 

hierarchical multiple regression also suggested that BO but not MS contributes 

significantly to the variance of g. Additionally, while constraining the BO path to zero in 

a nested model resulted in a worse fit, constraining the MS path had no effect. 

Furthermore, constraining both paths simultaneously actually result in a better model fit 

index and in more reliable STS and GAC factors. The authors hypothesized that the 

inconsistent findings regarding the role of MS and BO may reflect their relatively low 

factor reliabilities. The factor reliabilities for MS and BO were 0.34 and 0.64 

respectively, while those of the other factors were all in the 0.77-0.87 range.  
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Luo et al. (2010) concluded that the predictive power of working memory task 

performance is predominantly due to the involvement of STS and GAC, although he 

speculated that BO may potentially play an important role in certain specific areas of 

achievement. 

Additionally, the authors found apparent discontinuities in the distribution of 

ability on the GAC trait. The posterior classification of cases revealed that only a single 

participant belonged in the third-lowest ability level; hence, there was a gap between the 

two lowest and the three highest levels. This finding suggests that there may be some 

important qualitative difference between those in the lower levels and those in the upper 

levels. 

Like others, these authors reported higher correlations between working memory 

and intelligence measures when latent factor scores were examined that when observed 

indicators were used. Specifically, raw correlations were in the 0.4-0.6 range, while 

correlations between the working memory and g factor mean scores were in the 0.6-0.8 

range. It is worth emphasizing that the latter are not based on model parameter estimates 

(factorial correlations or structural relations) whose substantive virtue is difficult to 

validate.  Rather, they are tangible scores derived from the model-based posterior 

classification process, and whether they effectively represent meaningful constructs can 

be substantiated by evaluating their strength to discriminate certain cognitively 

exceptional individuals (e.g., those with mild mental retardation or those who are gifted). 

 General latent variable model has several characteristics that may allow for the 

surmounting of problems that have previously limited our understanding of working 

memory. These characteristics include the ability to include both discrete and continuous 
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traits, the principle of local independence, the estimation of posterior probability, and the 

methods of trait identification. A discussion of the relevance of each of these 

characteristics follows. 

 Generalized latent variable models can include discrete as well as continuous 

traits. Discrete traits are present when a population is composed of subgroups formed on 

the basis of an unobservable quality or trait, such as certain genetic variations (Muthén, 

2001). Each of these subgroups (or categories) has its own mean and variance, which are 

obscured when the population is treated as a whole (i.e., when the trait is regarded as 

continuous). When these subgroups are unordered clusters in the population, the relevant 

latent trait is said to be nominal. When the subgroups can be ordered along some 

continuum, the trait is said to be ordinal. Moreover, ordinal traits with a sufficient 

number of levels or categories can be used to approximate continuous traits (Aiken, 1999; 

Vermunt, 2002) 

There are some important differences when working with continuous latent traits 

as compared to discrete latent traits. When both observed and latent variables are 

continuous, a structural equation modeling approach is used, and there is no need to 

estimate the person parameters (factor scores) in the process of estimating the model 

parameters. Instead, the likelihood function for the entire sample can be derived from the 

normality-based covariance structure, and the maximum likelihood estimation process 

can maximize the function through iterations without drawing on any person-parameter 

values. Although factor scores may be obtained after the model parameters are estimated, 

they are not an intrinsic part of the estimation process.  
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 In contrast, when some of the variables (either latent or observed) are discrete, the 

estimation method necessitates a likelihood function for every response pattern. 

Therefore, estimates of class membership (for discrete factors) and factor scores (for 

continuous factors) are required for model parameter estimation. In the often preferred 

expectation-maximization (EM) estimation, these person-parameter values are substituted 

into the model in each cycle of the iteration and then updated in the next cycle to estimate 

the response-pattern likelihood until the convergence criterion is met.  

 There are also some important differences in the approach to response-pattern 

likelihood for continuous and discrete factors in the estimation process. For continuous 

factors, the probability density at each factor level is predetermined in that it is based on 

the normal distribution; however, obtaining the marginal probability (by integrating the 

probability densities) requires a great deal of computational power. For discrete factors, 

on the other hand, the probability density of a given class or category is empirically 

estimated, and the related marginal probability is obtained by summing over the 

class/category densities without need to integrate. When the latent distribution can be 

properly approximated by a discrete factor with a few levels (e.g., <10), the 

computational demand for a less sparse contingency table may be considerably reduced 

from that for a continuous latent factor whose approximate integration typically requires 

10 or more intervals (nodes) for an adequate accuracy.  Therefore, discrete factors can be 

considered to be preferable to continuous factors in this practical sense. 

 In the present study, a logistic link function relates the discrete observed 

indicators to the underlying latent traits.  In the item-level modeling of the working 

memory tasks, the indicators are on an ordinal scale reflecting the number of prompts 
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correctly recalled. As they relate to the underlying latent variable in a non-linear manner, 

the use of linear models such as employed in structural equation modeling will result in 

distorted estimations. Generalized latent variable modeling provides for a more 

appropriate method of regressing the ordinal indicators with latent predicators through a 

set of logistic link functions. 

 To illustrate, let Yi
t be an ordinal response, where i is the participant, t is the item, 

and the potential responses may be coded as 0, 1…Mt. For example, in a working 

memory task in which full recall is scored as 4, Mt is 4. There are therefore five possible 

response probabilities for the item (i.e. 0, 1, 2, 3, 4) and a constraint on the first item 

category (0) must be imposed in order to be identified. The logistic link function that then 

relates the observed response to the underlying trait or traits is as follows: 

Logitt
m = In[ P(Yi

t = m │X1 = x1, X2 = x2…)] 
                      P(Yi

t = m-1│X1 = x1, X2 = x2…)   (1) 

  = βt
0m + βt

1x1 +βt
2x2… 

In equation (1), x1 and x2… are scores of the latent traits X1 and X2, and βt
0m, βt

1, 

βt
2…are regression weights relating the latent traits to the log-transformed odds ratio 

between two adjacent item-categories. An adjacent-category logit is used for which each 

item t with Mt + 1 categories results in Mt unconstrained equations and one special 

equation for the constrained 0 category. Only the model intercept (ie, βt
0m) varies across 

item categories; the slopes (ie, βt
1, βt

2) do not vary. The slopes βt
1, βt

2 indicate how 

change in the latent trait X influences the logit between the categories m and m-1. 

To provide a concrete example, imagine the logits for the item with Mt + 1 = 5 

categories have the following intercepts: βt
0m=1 = 0.011, βt

0m=2 = 0.223, βt
0m=3=0.0564, 

and βt
0m=4=-0.123. The slope is βt

1= 2.299, and there is a single latent trait. In order to 
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identify parameters, the intercept for the category of 0 is set to zero, such that βt
0m = 0. If 

the participant has the trait score X1 = 0.33, the five logits have the following predicted 

values: 

logit1 =  (0.011 – 0) + 2.299 (0.33) = 0.76967 

logit2 = (0.223 – 0.011) + 2.299 (0.33) = 0.97067 

logit3 = (0.0564 -0.223) + 2.299 (0.33) = 0.59207 

logit4= (-0.123 – 0.0564) + 2.299 (0.33) = 0.57927 

logit0 = (0) + 2.299 (0.33) = 0.75867 

Each of the unconstrained logits shows the degree of change in probability from 

one item-category to the next (the odds ratio). For example, logit1 =  0.76967 means that 

for those with the trait score X1 = 0.33, the probability of the response 1 is equal to the 

probability of the response 0 multiplied by 2.15905 (because elogit 1 = e0.76967 = 2.15905). 

Similarly, the value of logit2 (0.97069) reflects the odds ratio between the response 

probabilities of the categories 2 and 1. As elogit 2 = e0.97069= 2.5398, the probability of the 

response 2 is 2.5398 times the probability of the response 1.  

In addition, odds ratios can be calculated for non-adjacent categories. For 

example, to find the probability of change from m=2 to m=0, calculate elogit1*elogit2  (or 

elogit1 + logit 2). Since elogit1 + logit 2= e0.76967+ 0.97069 = 5.6994, the probability of the response 2 

equals the probability of the response 0 multiplied by 5.6994. 

Furthermore, the odds ratios that relate to the constrained category (m=0) are used 

together in the back-transformation of the logits to item-category response probabilities 

for each category. Continuing the same example, to calculate the conditional probability 

for the response m=2 when X1 = 0.33: 

P(Yt
i = 2│ X1 = 0.33) 
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=                               elogit0+logit1+logit2_____________________________ 
     elogit0 + elogit0+logit1 + elogit0+logit1+logit2+…+elogit0+logit1+logit2+logit3+logit4 
 

=                      e0.75867+ 0.76967+0.97069_____________________________ 
   e0.75867+e0.75867+ 0.76967+…+ e0.75867+ 0.76967+0.97069+0.59207+0.57927 
 

= (2.1354)(5.6994)_____________________________________________________________ 
   2.13543+(2.13543)(2.15905)+(2.13543)(5.6994)+(2.13543)(10.30274)+(2.13543)(18.38766) 
 
 
=    _5.6994___________________________ 
      1+ 2.15905+5.6994+10.30274+18.38766 
 
= 5.6994 
   37.5489 
 
=  0.15179 
 
The adjacent-category logistic link function above gives rise to a partial-credit 

item response model when the latent trait X1 is continuous. This link function can also be 

applied to models which include latent endogenous variables, such as when an ordinal 

latent variable is treated as a dependent variable for other explanatory latent variables. 

Furthermore, the same adjacent-category function relates both the latent and the observed 

exogenous measures to the logits of the endogenous variables. 

 The principle of local independence is another important characteristic. Responses 

to separate items on a test are not independent in that knowing the response to one item 

on a test provides some information about likely responses to other items on the test. In 

terms of probability, the joint conditional probability for a given set of responses is 

generally not equal to the product of the unconditional probabilities for each separate 

item-response. An assumption of generalized latent variable modeling is that the latent 

traits that underlie responses entirely account for this interdependence. Accordingly, the 

conditional probabilities of responses would become independent if the latent traits were 



 26 

statistically controlled. This axiom of local independence means that the joint probability 

of a particular response pattern is equal to the product of the conditional probabilities of 

each individual item-response. To illustrate, imagine the conditional probability for a 

person with trait level X1=0.33 to respond 1 on item 1 is 0.5, and to respond 1 on item 2 

is 0.01. The axiom of local independence means that the joint probability of this response 

pattern, also known as the likelihood function, is 0.005 (the product of 0.5 and 0.01), as 

the latent X1 is assumed to account for any observed association between responses to the 

two items. Unlike structural equation modeling, Latent Gold accounts for associations 

between observed variables that are non-linear in nature, as well as standard correlations 

and covariances 

 One of the major advantages of generalized latent variable modeling over more 

established methods of latent class modeling is that it provides classification results for 

each individual as well as tangible individual trait scores. These scores can then be used 

to validate the theoretical relationships derived from the model. The classification of 

individuals into subgroups or trait levels occurs through the estimation of posterior 

probabilities. The calculation of posterior probabilities is based on Bayes’ Theorem, and 

the following formula is used: 

P (X1=x1│Y 
t=1

i = mt=1, Yt=2
i= mt=2, …) 

= P (X1=x1) P(Y 
t=1= mt=1, Yt=2

i= mt=2,…│ X1=x1) 
     P(Y 

t=1= mt=1, Yt=2
i= mt=2,…) 

 
= P (X1=x1,Y 

t=1= mt=1, Yt=2
i= mt=2,…) 

     P(Y 
t=1= mt=1, Yt=2

i= mt=2,…)     (2) 
 

This formula takes into account the following elements: the marginal probability 

of specific trait levels, the marginal probability of a specific response level, and the joint 
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conditional probability of a specific response pattern and trait level. These elements will 

be discussed separately, along with how they combine in the formula, and how the 

overall classification process occurs. 

 The numerator of equation 2 includes the joint conditional probability for a given 

response pattern. As described in the previous section the joint probability for a person 

with trait level 0.33 to have the response pattern 11 is 0.005, which can be written as: 

 P(Yt=1
i = 1, Yt=2

i=1│X1 = 0.33) = 0.005 

Further, assume that there are four levels of the latent trait X1:  X1 = 0, X2 = 0.33, 

X3 = 0.66, and X4 = 1. The marginal probability of each of these levels is obtained through 

model parameter estimation, but imagine they are as follows: 

 P (X1 = 0.0) = 0.22 

 P (X2 = 0.33) = 0.43 

 P(X3 = 0.66) = 0.19 

 P(X4 = 1.0) = 0.16 

 The numerator of the equation combines these two elements. To continue the 

same example, for the response pattern Yt=1
i = 1, Yt=2

i=1 and the trait level X1= 0.33, the 

numerator is as follows: 

 P(X1 = 0.33)* P(Yt=1
i = 1, Yt=2

i=1│X1 = 0.33) =  0.43*0.005 = 0.00215. (3) 

 The denominator of the Bayes’ formula is the marginal probability of the given 

response pattern. It is calculated by summing the joint probabilities of the response 

pattern in question and all possible trait levels. For example, the marginal probability 

P(Yt=1
i = 1, Yt=2

i=1) is equal to the total probability of the response pattern Yt=1
i = 1, 

Yt=2
i=1 occurring at all levels of X1 (X1 = 0, X2 = 0.33, X3 = 0.66, and X4 = 1): 
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 P(Yt=1
i = 1, Yt=2

i=1) 

 = P(X1 = 0) P(Yt=1
i = 1, Yt=2

i=1│X1 = 0) 

 + P(X1 = 0.33) P(Yt=1
i = 1, Yt=2

i=1│X1 = 0.33) 

+ P(X1 = 0.66) P(Yt=1
i = 1, Yt=2

i=1│X1 = 0.66) 

+ P(X1 =1) P(Yt=1
i = 1, Yt=2

i=1│X1 = 1) 

One of the elements on the right side of the equation is the joint probability for the 

response pattern in question and the trait level X1= 0.33, which has been shown above to 

be 0.0021. Assume that the remaining elements of this side of the equation are as follows: 

P(X1 = 0) P(Yt=1
i = 1, Yt=2

i=1│X1 = 0) =  0.6500 

P(X1 = 0.66) P(Yt=1
i = 1, Yt=2

i=1│X1 = 0.66) = 0.0200 

 P(X1 =1) P(Yt=1
i = 1, Yt=2

i=1│X1 = 1) = 0.0030 

Thus, the marginal probability of the response pattern (ie, the denominator of 

Equation 2) is as follows: 

 P (Yt=1
i =1, Yt=2

i = 1) = 0.6500 + 0.0012 + 0.0200 + 0.0030 = 0.6742 (4) 

Finally, the values of equations 4 and 3 can be substituted into Bayes’ formula in 

equation 2 in order to obtain the estimated posterior probability for participant i, who has 

the response pattern Yt=1
i = 1, Yt=2

i=1, to have the latent trait level X1=0.33, as follows: 

P(X1 = 0.33│ Yt=1
i =1, Yt=2

i = 1) = 0.00215/0.6742 = 0.0032. 

This value can be compared to the posterior probabilities for the other trait levels, 

which are as follows: 

P(X1 = 0│ Yt=1
i =1, Yt=2

i = 1) = 0.6500/0.6742 = 0.9641 

P(X1 = 0.66│ Yt=1
i =1, Yt=2

i = 1) = 0.0200/0.6742 = 0.0297 

P(X1 = 1│ Yt=1
i =1, Yt=2

i = 1) = 0.0030/0.6742 = 0.0044 
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Clearly, the highest of the posterior probabilities is 0.9641; therefore, a participant 

with this response pattern would be classified as having a trait level of 0. Latent Gold 

uses the same procedure of matching participants to trait levels based on posterior 

probabilities in its classification process. 

Latent Gold also provides a weighted mean sum, called the factor mean score, for 

each participant based on the estimation of posterior probabilities. The factor mean score 

for participant i can be obtained by multiplying the posterior probability of each trait 

level by its value (0, 0.33, 0.66, or 1) and then summing the products.  Using the 

information already obtained, the factor mean score is therefore: 

0.9641*0 + 0.0032*0.33 + 0.0297*0.66 + 0.0044*1 = 0.025058 

Current Study 

 The primary objective of the current study was to test the hypothesis that each of 

the working memory factors already defined by Luo et al. (i.e., STS, GAC, MS, and BO; 

2010) contributes not only to intelligence but to academic achievement. This was the first 

such study to investigate the relationship between orthogonally-defined working memory 

components and academic achievement, and was significant in its ability to isolate the 

particular working memory components responsible for the relationship. Previous 

investigations have relied on correlated working memory factors, and have therefore been 

unable to address this issue. The ability to specify which components of working memory 

are instrumental in academic achievement has practical as well as theoretical 

significance, as there is evidence that improving performance on some working memory 

tasks can lead to improvement in school performance. Therefore, the results of this study 
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will potentially facilitate the design of more effective working memory training tasks in 

the future. 

 At the same time, the study addressed the issue of the role of working memory in 

intelligence. While this question is less novel, the methodology utilized allows for some 

clarification of a controversial issue. As previously stated, generalized latent variable 

modeling has the benefits of traditional structural equation modeling (i.e., a purified, 

error-free measure), without some of the major drawbacks, such as the possibly faulty 

normality and homogeneity assumptions and the difficulty to substantively validate the 

theoretically derived correlations and structural relations.  Therefore, it is hoped that the 

results of this study will help resolve what has been an ongoing and highly-contentious 

issue. 

 A related but secondary objective is to investigate whether working memory 

components – individually or in some combination – provide more explanatory power 

with regard to academic achievement than do either or both of the traditional measures of 

intelligence.  As previously discussed, work by Luo et al. (2003) suggested that the 

Performance index may play a minimal role in academic achievement and that other 

measures (such as processing speed tasks) provide more explanatory power. Thus, it may 

well be the case that working memory tasks provide one such superior measure. By 

providing clarification of the role of fluid intelligence in academic achievement relative 

to other important predictors (e.g., working memory and crystallized intelligence), the 

validity of this construct may be enhanced.  Specifically, the study will help clarify the 

relationships between fluid intelligence, working memory, and academic achievement. 
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CHAPTER TWO 

METHODS 

Participants 

This study used archival data collected from 1197 elementary school children in 

Shanghai and Yanchen, China. These children were recruited for a project investigating 

the cognitive etiology of mild mental retardation (MMR; Luo et al., 2010). All of the 

children were in grade three or four,and age was treated as a covariate in analyses to 

control for its possible impact on performance. Of these 1197 children, 140 had 

previously been diagnosed with mild mental retardation absent co-existing behavioral or 

health problems, while the rest were in the normal cognitive range. A total of 207 

participants had missing values on one or more measures and listwise deletion was used, 

leaving a total of 990 cases (123 in the MMR group). Because the size of the MMR group 

was disproportionate to that than found in the population (approximately 2%), these cases 

were weighted down to be comparable (Luo et al.) 

Measures 

 A large battery of tests was administered to the children in the sample. The 

battery included elementary cognitive tasks, cognitive ability tests, and academic 

achievement tests; however, only data from the latter two types of tests was included in 

this study. The cognitive ability tests included subtests from the Chinese translation of the 

WISC-R (WISC-RC). In the construction of the WISC-RC, most items and instructions 

were directly translated from the American version; however, a few items on some of the 
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verbal subtests (such as Vocabulary) were altered to better fit the Chinese context (Dan, 

Jin, Vadenber, Yuemei, & Caihong, 1990; Dai & Lynn, 2001). 

Digit Span (DS): DS is one such subtest from the WISC-RC, and a working 

memory task with a storage demand. It contains two parts: forward digit span (FDS), and 

backward digit span (BDS). In FDS, the examinee must repeat an orally-presented list of 

digits varying from two to nine digits in length; each digit length has two trials. In (BDS), 

the examinee must repeat this list of digits in backwards order, thereby adding a 

processing demand. The digit lengths vary from two to eight, and each length has two 

trials. The split-half reliability of DS is .85, and the test-retest reliability is .77 (Dai et al., 

1990). 

Letter-Number Sequencing (LNS): LNS is another well-established working 

memory task, and is included in the current English-Language version of the Wechsler 

Intelligence Scale for Children (WISC-IV).  In this task, the participant must sort orally-

presented lists consisting of letters and digits mixed together into numerical and 

alphabetical order. Therefore this task requires both storage and a processing demand. 

The lists range in length from two to eight digits and letters, and there are three trials of 

each digit length. The split-half reliability of this subtest is .69, and the test-retest 

reliability is .67 (Dai et al., 1990). 

Verbal and performance summary scores: The four Verbal subtest scores from 

the WISC-RC (Comprehension, Information, Similarities, and Vocabulary) were summed 

to form a Verbal summary score. Similarly, the four Performance subtest scores (Block 

Design, Object Assembly, Picture Arrangement, and Picture Completion) were summed 

to form a Performance score. 
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Math Test: This test consists of 30 multiple-choice questions about mathematical 

concepts, the application of formulas, and applied problems. 

Chinese Test: This test also consists of 30 multiple-choice questions relating to 

vocabulary, sentence structure, and reading comprehension. 

Analysis 

 The methods of generalized latent variable modeling were used to conduct all 

model testing and comparison in this study. This general term encompasses a variety of 

latent variable models including finite mixture modeling and latent class modeling 

(Skrondal & Rabe-Hesketh, 2004). Finite mixture modeling is used to model discrete 

latent variables – indicating latent population heterogeneity—that underlie continuous 

observed variables, while latent class modeling is used with discrete latent traits and 

discrete latent variables. Similar methods can also be applied to continuous latent traits 

for discrete indicators (as in traditional item response theory) and various combinations 

of continuous and discrete latent traits (Vermunt, 2001).  In the present study, responses 

to all working memory items were analyzed at the item level. The observed variables 

were on an ordinal scale (reflecting the number of trials successfully completed), while a 

logistic link function related these indicators to the underlying latent traits, as described 

in the previous chapter. Verbal, Performance, mathematics and Chinese responses were 

analyzed at the task level, with discrete latent variables underlying continuous observed 

variables. 

 The initial part of the study was a replication of the modeling of working memory 

traits reported by Luo et al. (2010). As in the prior study, model selection followed two 

standard procedures. First, models with varying numbering numbers of continuous traits 



 34 

were tested, as working memory and intellectual abilities are conventionally treated as 

continuous traits. The working memory traits were specified as orthogonal to each other 

and therefore represent independent sources of variance. By the same token, the latent 

traits underlying the Verbal and Performance scales are conventionally treated as 

overlapping with working memory traits; therefore both of these traits were allowed to 

covary with each of the working memory traits. Then, following selection of the best-

fitting continuous-trait model, the possibility of a discrete-trait model being a better fit 

was examined. For example, if a one-continuous trait model was found to fit the data 

better than models with multiple continuous traits, then models with one discrete trait and 

varying numbers of levels (i.e., categories) would then be tested until an optimal fit was 

found. In practice, models with discrete latent traits invariably provided a closer fit and 

were additionally selected because of the theoretical considerations discussed in the 

previous chapter.  

 The model fit index used to select from competing models was the Bayesian 

Information Criterion (BIC), which is a log likelihood index based on both model-data 

discrepancy and model parsimony (Schwarz, 1978). Additionally, the Likelihood Ratio 

Chi-Squared Index (L2), an asymptotic chi-squared index, is available when all observed 

indicators are discrete (as for the working memory items); when possible, this index was 

used to generate bootstrapping significance tests of fit of the selected models. When the 

L2 index was not available, as when some observed indicators are continuous (as for 

everything other than the working memory items), the Log Likelihood (LL) and BIC 

indices only were used  (Vermunt & Magidson, 2005). In all cases, the lower the index, 

the better the model fit. 
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 As described in the previous chapter, generalized latent variable modeling 

produces classification results for each individual. When the latent trait is discrete, the 

posterior membership probability is first estimated for each trait level. Thereafter, the 

individual is assigned to the level with the highest probability. The classification process 

can also produce useful information regarding the overall distribution of the latent trait. 

Although latent trait scores are evenly spaced on a 0-1 scale (such that for three 

categories/levels, the scores would be 0, 0.5, and1), the frequency distribution does not 

necessarily take a particular shape.  

Procedures 

 Models involving working memory tasks, Verbal, Performance, and achievement 

tests were tested, first separately and then in combination. 

Modeling working memory: Based on the previous work by Luo (2008), working 

memory factors (STS, GAC, MS, and BO) were specified to load on the items of 

particular subtests. While STS was specified to load on every item, GAC was specified to 

load on only the BDS and LNS items, MS on only the LNS items, and BO on only the 

BDS items. Initially, only subgroups of the WM factors were estimated (FDS & LNS; 

LNS & BDS; FDS& BDS), in order to allow for factors to be distinguished from each 

other. In each grouping, models with different numbers of continuous and discrete traits 

were first compared. When it was found that discrete models provided a better fit for the 

data, models with different levels of discrete traits were then compared. Using the factor 

mean scores generated during model estimation, intercorrelations were then calculated to 

ensure that the factors were reasonably independent. 
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 Additionally, a parametric bootstrapping procedure was used with the optimally-

fitting models to investigate fit in the absolute rather than relative sense; bootstrapping 

checks whether the “optimal” model in fact provides a satisfactory fit for the data (Efron, 

1979). Five hundred Monte Carlo replications generated the probability distribution 

defined by the parameter estimates of the selected model in this L2-based procedure.  

Modeling intelligence (Performance, Verbal) and achievement factors: These complex 

measures of cognitive ability are likely to include numerous sources of variance (Deary, 

2000; Jensen, 1998); however, distinguishing all these difference sources was not the 

purpose of the current study. Instead, a goal was to understand the role of the working 

memory mechanisms in each. Therefore, item-level analyses of these measures were not 

attempted. Instead, factors were defined from total scaled scores of each of the relevant 

subtests. Models with continuous factors of varying number were first tested. After the 

optimal number of continuous factors was determined, models with the same number of 

discrete factors but varying levels were then tested. Additionally, factor loading estimates 

on each of the relevant subtests were obtained. 

Modeling working memory with intelligence factors: The next step was to investigate the 

relationship between working memory and each of these factors based on the best-fitting 

models already identified.  Path models in which the working memory factors were 

specified as exogenous latent variables, and the intelligence factor was an endogenous 

latent variable was specified in order to examine the unique contribution of each working 

memory mechanism (Vermunt & Magidson, 2008b).  

Two methods were used to evaluate the contribution of each working memory 

factor to the criterion factor. First, the contribution of each exogenous variable was 



 37 

assessed by examining the regression weights (z-values) for the paths from each 

exogenous variable to the endogenous variable, along with the corresponding p-value. 

Thus, the relative magnitude of contribution could be assessed by comparing the size of 

the z-values for all factors for which p<0.05. Additionally, corresponding association 

models were estimated for each path model so that posterior probability estimates were 

generated. The mean factor scores were then used in hierarchical multiple regression 

models. 

Modeling intelligence and achievement: The contribution of the intelligence factors was 

assessed as described previously, by examining the regression weights (z-values) and 

multiple regression (primarily R2 changes). However, an additional procedure was 

included as a means of further validation. A series of nested models were tested, in which 

a path or paths to the Achievement factor were constrained to zero. When a constrained 

path (e.g. Verbal-to-Achievement) resulted in a markedly worse fit (as indicated by a 

relatively larger BIC index) when compared to the full model (in which no paths were 

constrained), further substantiation of the contribution of the constrained factor was 

obtained. On the other hand, evidence that the constrained factor did not make an 

important contribution was obtained when there was little change in terms of model fit.  

Modeling working memory, intelligence, and achievement: Attempts to include all 

working memory indicators along with one or both intelligence indicators and the 

achievement indicators proved to be too computationally demanding. Therefore, a 

decision to include only subsets of working memory indicators (and therefore two instead 

of four working memory factors) was made. The FDS indicators were always included so 

that a STS factor could always be included. The LNS items were generally used in 
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preference to the BDS items as the LNS items loaded more strongly on the GAC factor. 

However, some modeling with the STS and BDS subset of items was also done in order 

to provide further validation. 

Statistical Program  

 The program Latent Gold 4.5 (Vermunt & Magidson 2005, 2008) was used for all 

generalized latent variable modeling in this study. This software allows for the inclusion 

of a diverse array of variables, both latent and observed, discrete (ie. nominal and 

ordinal) and continuous. Additionally, both linear and non-linear relations between 

variables may be included. For ordinal item responses (as is the case for the working 

memory tasks in this study), an adjacent-category logistic is the default link function. 

This program also allows users to generate classification results and latent trait scores 

based on the estimated posterior probabilities. When the latent traits are on a continuous 

scale, these scores are equivalent to traditional factor scores or person parameter 

estimates. When the latent traits are on an ordinal scale, individuals are classified 

according to the most probable trait level and are additionally assigned a factor mean 

score. These factor mean scores can then be used to evaluate inter-trait correlations. 

Association models were specified in graphic mode, while path models could only be 

specified in syntax mode. 
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CHAPTER THREE 

RESULTS 

Preliminary Analysis 

 Pearson’s product-moment correlations were calculated and are displayed in 

Table 1, along with the reliability estimates, and means and standard deviations. 

Table 1 

Correlations, Reliability Estimates, and Descriptive Statistics  

 DS LNS V P C M 
DS (0.78) 0.49 0.45 0.35 0.43 0.39 
LNS  (0.71) 0.48 0.45 0.49 0.43 
V   (0.92) 0.57 0.63 0.51 
P    (0.84) 0.49 0.43 
C     (0.82) 0.70 
M      (0.87) 
Mean 16.48 9.12 41.51 42.06 19.88 19.17 
SD 3.75 2.61 11.13 8.42 5.42 6.53 
 

Note.  DS is the Digit Span total score, LNS is the Letter-Number Sequencing total 

score, V is the sum of the four WISC-RC Verbal subtests, P is the sum of the four WISC-

RC Performance subtests, C is the Chinese total score, and M is the Mathematics total 

score. Reliability estimates (Cronbach’s Alpha Co-efficients) are displayed on the 

diagonal. 

Working Memory Factors 

 An item-level analysis of the working memory indicators was performed, based 

on the previous generalized latent variable modeling by Luo et al. (2010). Working 

memory factors (STS, GAC, MS, and BO) were specified to load on the items of 

particular subtests; while STS was specified to load on every item, GAC was specified to 
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load on only the BDS and LNS items, MS on only the LNS items, and BO on only the 

BDS items.  

 Initially, only subgroups of the WM factors were estimated, in order to allow for 

factors to be distinguished from each other. In each grouping, models with different 

numbers of continuous and discrete traits were first compared. When it was found that 

discrete models provided a better fit for the data, models with different levels of discrete 

traits were then compared.  

FDS and LNS: In this subgrouping of WM indicators, the first factor was 

constrained to load only on the LNS items (thus representing GAC and MS), while the 

second factor loaded on all FDS and LNS items (thus representing STS). The optimal 

model was one in which both factors were discrete and there were seven levels of each 

factor. Several models were tested, including the ones shown in Table 2. 

Table 2 

Item-level FDS and LNS Factors 

Model df p(bootstrap) BIC 

2 continuous factors 807 0.00 14022.53 

2 discrete factors (8,8) 802 0.00 13750.40 

2 discrete factors (7,8) 804 0.00 13748.59 

2 discrete factors (6,8) 804 0.00 13749.05 

2 discrete factors (7,7) 804 0.00 (0.20) 13745.76 

2 discrete factors (7,6) 805 0.00 13750.12 

 

The correlation between the two factor mean scores was significant (r=.14) at 

p<0.01, but weak, indicating the posterior estimation largely retains the orthogonal 

property of the priori model. 
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LNS and BDS: In these models, there were three factors: one for STS and GAC 

combined (or the variance shared by both indicators), one for MS, and one for BO. The 

first factor was allowed to load on all items, while the second factor was constrained to 

load only on the LNS items, and the third factor constrained to load only on the BDS 

items. Several models were tested, and the optimal model was found to have all discrete 

factors, with five levels for STS and GAC, six levels for MS, and four levels for BO. 

Model fit indices for some of the models tested are shown in Table 3. 

Table 3 

Item-level LNS and BDS Factors 

Model df p(bootstrap) BIC 

3 continuous factors 803 0.00 13759.79 

3 discrete factors (5,6,6) 799 0.00 13600.70 

3 discrete factors (5,6,5) 800 0.00 13597.86  

3 discrete factors (5,6,4) 801 0.00 (0.09) 13577.80 

3 discrete factors (5,6,3) 802 0.00 13617.26 

3 discrete factors (6,6,4) 800 0.00 13612.59 

 

FDS and BDS: In this subgrouping, STS was allowed to load on all FDS items, 

while GAC with BO were constrained to load only on the BDS items. Again, the optimal 

model had only discrete factors with eight levels of the first, and eight of the second 

factor. The correlation between the two factor mean scores was again weak, and 

significant (r=.13) at p<0.01. Table 4 shows model fit data for some of the models tested. 
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Table 4 

Item-level FDS and BDS Factors 

Model df p(bootstrap) BIC 

2 continuous factors 831 0.00 11424.36 

2 discrete factors (8,8) 817 0.00 (0.13) 11314.41 

2 discrete factors (7,8) 817 0.00 11361.21 

2 discrete factors (7,7) 818 0.00 11348.93 

 

 All working memory indicators: Based upon the subsets of indicators already 

tested and the factors distinguished, models with all working memory indicators were 

included. The optimal model had five levels of STS, six levels of GAC, five for BO, and 

five for MS. Model fit data for some of the models tested is shown in Table 5. 

Table 5 

Item-level FDS, BDS, and LNS Factors 

Model df p(bootstrap) BIC 

4 discrete factors (6,6,6,6) 759 0.00 19165.90 

4 discrete factors (6,5,6,6) 760 0.00 19158.42 

4 discrete factors (6,5,6,5) 764  0.00 17967.14 

4 discrete factors (5,6,6,6) 760 0.00 19183.74 

4 discrete factors (5,6,5,6) 764 0.00 17939.05 

4 discrete factors (5,6,5,5) 765 0.00 (0.68) 17926.97 

 

 Table 6 shows the correlations between the factor means scores obtained in the 

estimation of this model. 
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Table 6 

Intercorrelations Among Working Memory (WM) Factor Mean Scores 

 STS GAC BO MS 

STS -- .14** .08* 0.12 

GAC  -- .13**  .13** 

BO   -- .04 

MS    -- 

*p<.05, **p<.01 

 

Additionally, Figure 1 shows the factor loading estimates of the working memory 

factors, all of which are significant at p<0.05. These estimates are linear approximations 

of the model slope parameters, which reflect the magnitude of the relationship between 

the latent trait and the specific item (Vermunt & Magidson, 2005). 
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Figure 1.  Factor loading estimates of working memory factors. 
Note. Numbers in rectangles correspond to item numbers. 
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Block design 

Pic completion 

Pic. arrangement 

Object assembly 

Performance Factor 

As previous stated, a scaled score Performance total was used as the sole observed 

indicator.  A model with a single factor was found to fit better than a model with two 

factors, and the best-fitting model had one discrete factor with five levels, as shown in 

Table 7. 

Table 7 

Task-level Performance Factor 

Model LL BIC 

1 continuous factor -8280.8436 16643.11 

2 continuous factors  -8278.2316 16665.03 

1 discrete factor (3 levels) -8275.8317 16646.66 

1 discrete factor (4) -8246.7556 16595.29 

1 discrete factor (5) -8237.9923 16584.55 

1 discrete factor (6) -8236.6639 16588.68 

Note. L2- based bootstrapping values are not available for models that  

include continuous variables. 

 Additionally, figure 2 shows the factor loading estimates of the Performance 

factor for each of the four subtests. 

 

0.59 

0.71 

Figure 2.  Factor loading estimates of Performance factor. 
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 Working Memory and Performance Factors 

 An extended model that included the best fitting working memory and 

Performance models already identified was estimated, to investigate the unique 

contribution of the working memory factors to Performance.  Using syntax mode in 

Latent Gold 4.5 (Vermunt & Magidson 2005, 2008), a path model in which STS, GAC, 

BO, and MS were independent exogenous variables and Performance was an endogenous 

variable was specified.  All factors were specified as discrete, with five levels for STS, 

six for GAC, five for BO, six for MS, and five for Performance.  

Two methods were used to evaluate contributions from the working memory 

mechanisms. First, the regression weights for the paths from working memory factors to 

Performance were examined, and are shown in Table 8. The path from STS to 

Performance and the path from GAC to Performance were significant at p<0.05. 

Table 8 

Paths from WM Factors to Performance  

Parameter term Co-efficient s.e. z-value p-value 

STS to Performance 6.94 1.19 5.83 0.00 

GAC to Performance 7.13 0.99 7.22 0.00 

BO to Performance 0.56 0.92 0.61 0.54 

MS to Performance 0.22 0.91 0.25 0.80 

 

The reliabilities (standard R2) ranged from 0.54 for MS to 0.85 for STS. 

Additionally, the posterior trait scores for each of the factors was obtained and used to 

calculate Pearson correlations, as shown in Table 9. 
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Table 9 

Intercorrelations Among WM and Performance Factor Mean Scores 

 STS GAC BO MS P 

STS -- .14**  .14**  .00 .37**  

GAC -- -- .15**  .11**  .53** 

BO -- -- -- .048  .045 

MS -- -- -- -- .040 

P -- -- -- -- -- 

*p<.05, **p<.01 

 

The working memory factors together accounted for 37.1% of the variance of 

Performance (R2), and significant unique contributions were made by STS, GAC, and 

BO. STS contributed 9.4% of the variance of Performance, GAC contributed 23.2%, and 

BO contributed .5% above and beyond the other factors. 

 Verbal Factor 

 A Verbal factor was modeled in the same manner as the Performance factor, using 

the scaled score totals as observed indicators. Initially, a model with one continuous 

factor was compared to a model with two continuous factors. As the one-factor model fit 

had a better fit, it was next compared to models with various levels of a discrete factor. 

Overall, optimal fit was provided by the model with six levels of the discrete factor. 

Table 10 provides comparative information for some of the models tested. 
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Table 10 

Task-level Verbal Factor 

Model LL BIC 

1 continuous factor -8554.47 17198.36 

2 continuous factors  -8545.61 17199.78 

1 discrete factor (4 levels) -8565.29 17232.35 

1 discrete factor (5) -8552.53 17213.61 

1 discrete factor (6) -8539.00 17195.32 

1 discrete factor (7) -8540.08 17202.28 

Note. L2- based bootstrapping values are not available for models that  

include continuous variables. 

In addition, figure 3 shows factor loading estimates for the Verbal factor.  

 

Verbal 

 
Figure 3. Factor loading estimates of Verbal factor. 
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Working Memory and Verbal Factors 

 A path model was specified in order to evaluate the unique contribution of each 

working memory factor to the Verbal factor. Based on previous modeling, all factors 

were specified as discrete, with five levels of STS, six levels of GAC, five levels of BO, 

six levels of MS, and six of Verbal. In the first stage of the evaluation, the parameter 

estimates from the working memory factors to the Verbal factor were examined, and are 

shown in Table 11 below. The path from STS to Verbal, the path from GAC to Verbal, 

and path from MS to Verbal were all significant at p<0.05. 

Table 11 

Paths from WM Factors to Verbal  

Parameter term Co-efficient s.e. z-value p-value 

STS to Verbal 12.19 1.72 7.08  0.00 

GAC to Verbal 18.78 3.32 5.65 0.00 

BO to Verbal 2.69 1.93 1.39 0.16 

MS to Verbal 6.06 1.88  3.22 0.00 

 

 The reliabilities (Standard R2) of each factor were as follows: STS=0.85, GAC= 

0.81, BO=0.65, MS= 0.53, and Verbal = 0.84. Correlations between factor mean scores 

used in this model are shown in Table 12. 



 50 

Table 12 

Intercorrelations Among WM and Verbal Factor Mean Scores 

 STS GAC BO MS V 

STS -- .15**  .10**  .01 .39**  

GAC -- -- .11**  .16**  .41** 

BO -- -- -- .038  .10** 

MS -- -- -- -- .07 

V -- -- -- -- -- 

*p<.05, **p<.01 

 
 The working memory factors together accounted for 25.15% of the variance of 

Verbal (R2). The unique variance contributed by STS was a significant 7.7% of Verbal. 

GAC contributed a significant 12.8% of the variance above and beyond the other working 

memory factors. Neither MS nor BO made any significant unique contribution. 

A nested model was used to further investigate whether MS makes a significant 

unique contribution to Verbal. In the nested model, the MS-to-verbal path was 

constrained to zero; the fit of this model was compared with the full model with no paths 

constrained. The BIC (LL) fit index for the full model was 34108.65, while that of the 

nested model was only marginally worse, at 34126.91. The Akaike Information Criterion 

3 (AIC3) index for the full and nested models were also compared, with that of the nested 

model being smaller and therefore preferable (33612.27, compared to 33615.14). The 

weight of the evidence therefore indicated that MS does not make a meaningful 

contribution to Verbal. 
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Achievement Factor 

 The total scaled scores for mathematics and Chinese were used as observed 

indicators for an achievement factor. After testing competing models (as shown in Table 

13), a model with four levels of a discrete factor was found to provide the best fit.   

Table 13 

Task-level Achievement Factor 

Model LL BIC 

1 continuous factor -5305.10 10644.07 

2 continuous factors  -5305.10 10650.84 

1 discrete factor (3 levels) -5198.18 10450.55 

1 discrete factor (4) -5193.97 10448.90 

1 discrete factor (5) -5193.17 10454.08 

1 discrete factor (6) -5193.22 10460.96 

Note. L2- based bootstrapping values are not available for models that  

include continuous variables. 

 However, the model with a continuous factor could not be identified without 

some additional constraints, because the number of factor loading parameters to be 

estimated exceeded the single observed covariance to be fitted to. One possible solution 

is to add an additional constraint so that the model will be just identified, such as by 

constraining the two loadings to be equivalent or choosing an arbitrary value for one of 

the two values. Therefore, the two loadings were first constrained to be equivalent, and 

the BIC (LL-based) estimate was 10654.22. Next, the loading estimate for Chinese was 

fixed (using the loading estimate obtained previously), with the resulting BIC (LL-based) 

estimate of 10644.07. While these models fit worse than those with discrete factors, they 

might reasonably be considered over-constrained. 
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 Another possible solution to this identification problem is to demonstrate that the 

Chinese and Math indicators can be considered mixtures of distributions rather than 

homogeneous distributions, thereby showing that a continuous-factor model (which is 

based on the assumption that the observed indicators follow homogeneous normal 

distributions) is invalid. The homogeneity of the distributions was tested by modeling 

various numbers of clusters, as shown in Table 14. 

Table 14 

Testing Homogeneity of Achievement Indicator Distributions 

Indicator Model LL No. of parameters BIC  

Chinese 1-cluster -2719.56 2 5452.67 

 2-cluster -2640.14 5 5314.15 

 3-cluster -2631.51 8 5317.21 

Math 1-cluster -2892.02 2 5797.59 

 2-cluster -2794.30 5 5622.49 

 3-cluster -2784.91 8 5624.04 

  

 The results shown in Table 14 indicate that neither observed indicator follows a 

homogeneous univariate normal distribution. As the assumption about the univariate 

distributions represented by the one-cluster models does not appear valid, the assumption 

of a homogeneous bivariate normal distribution for the two indicators also appears 

implausible.  Therefore, it was concluded that the model of a normally distributed latent 

factor underlying a homogeneous bivariate normal distribution is inappropriate for the 

two indicators. 

 It should be noted that the models with a discrete factor could be more readily 

identified. This is because a discrete-factor model is a mixture model in which the 
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number of known quantities exceeds the number of factor loadings to be estimated. In 

these models, there are multiple levels (i.e. multiple latent subgroups), each of which give 

rise to their own observed covariances, while the number of factor loadings is two, no 

matter how many levels there are. 

 Figure 4 shows the factor loading estimates for the Achievement factor and the 

Chinese and Mathematics indicators. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Factor loading estimates of Achievement factor. 

Achievement 

0.89 

0.80 

Chinese 

Mathematics 
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Working Memory and Achievement Factors 

 In order to evaluate the unique contribution of each working memory factor to 

achievement, a path model was specified in Latent Gold’s syntax mode, with independent 

working memory factors were specified as exogenous, and the Achievement factor 

specified as endogenous. Based on previous modeling, only discrete factors were used, 

with five levels for STS, six for GAC, five for BO, six for MS, and four for achievement. 

The parameter estimates are shown in Table 15, showing STS, GAC, and BO make a 

substantial unique contribution to achievement (p<.05). 

Table 15 

Paths from Working Memory Factors to Achievement 

Path Co-efficient s.e. z-value p-value 

STS to Achievement 6.95 1.11 6.24  0.00 

GAC to Achievement 6.12 0.72 8.46 0.00 

BO to Achievement 2.02 0.63 3.19 0.00 

MS to Achievement 0.59 0.82  0.72 0.47 

 

 As the significance of the BO-to-Achievement path was unexpected, significance 

was further tested by comparing the fit of the full model and a nested model in which this 

path was constrained to zero. The BIC (LL) fit index for the full model was 27776.34, 

compared to 27784.28 for the constrained model. Since constraining the path resulted in a 

fit that was only very marginally worse than the full model, it was concluded that BO 

does not make a substantial unique contribution to achievement. 

 The reliabilities of the factors (standard R2) were: STS = 0.85, GAC= 0.81, 

BO=0.64, MS= 0.58, Achievement= 0.88. 
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 Intercorrelations between the factor mean scores are shown in Table 16. 

Table 16 

Intercorrelations Among WM and Achievement Factor Mean Scores  

 STS GAC BO MS A 

STS -- .46**  .16**  .09** .62**  

GAC -- -- .16**  .15**  .47** 

BO -- -- -- .021  .17** 

MS -- -- -- -- .13** 

A -- -- -- -- -- 

*p<.05, **p<.01 

 

 The working memory factors together accounted for 33.1%  of the variance of 

Achievement. The contribution of GAC above and beyond the other factors was 16% of 

the variance of achievement, while the contribution of STS was 8.8%. Both MS and BO 

contributed a significant .09%.  

Achievement and Non-Working Memory Factors 

 Paths between Achievement and Performance, and between Achievement and 

Verbal were estimated separately. In the first of these, a path model with Performance as 

an exogenous factor, and Achievement as an endogenous factor was specified, and 

Performance was found to make a significant unique contribution to Achievement.  

The correlation between the two factor mean scores was .49, significant at the 0.01 level. 

Similarly, a path model with Verbal as an exogenous factor, and Achievement as an 

endogenous factor was specified. In this model, Verbal was found to make a substantial 

unique contribution to Achievement. Table 17 shows the parameter estimates for each of 
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the non-working memory paths. The correlation between the Verbal factor mean score 

and the Achievement factor mean score was .59, also significant at the 0.01 level.  

Table 17 

Paths from Non-WM Factors to Achievement 

Path Co-efficient s.e. z-value p-value 

Perf. to Achievement 9.96 1.18 8.45 0.00 

Verb. to Achievement 19.75 2.05  9.62 0.00 

 

 To investigate further the role of each exogenous factor, the fit of full and nested 

models was compared, and the results are shown in Table 18. Reliabilities of all factors 

were in the 0.80 to 0.96 range. 

Table 18 

Fit of Full and Nested Models: Verbal, Performance, and Achievement 

Model LL BIC (LL) 

Full (no paths constrained) -17637.75 36745.32 

Perf. path constrained -17654.75 36780.73 

Verb. path constrained -17722.22 36921.29 

 

Performance and Verbal together were found to account for 51.7% of the variance 

of Achievement. Verbal provided a significant 6.6% contribution above and beyond 

Performance, while Performance accounted for 14.6% above Verbal. 

Working Memory, Performance, and Achievement Factors 

 A subset of working memory items (FDS and LNS) were included in a path 

model in which the working memory factors and Performance were specified as 
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associated (ie. correlated) predictors for Achievement. The paths from all three factors 

were significant at p<0.5, and are shown in Table 19.   

Table 19 

Paths from Working Memory and Performance Factors to Achievement 

Path Co-efficient s.e. z-value p-value 

STS to Achieve. 6.37 1.14 5.61 0.00 

GAC+MS to Achieve. 6.56 1.20  5.48 0.00 

Perf. to Achieve. 10.15 1.62 6.28 0.00 

 

 Correlations between the mean factor scores were significant at 0.01 for STS and 

GAC+MS (r=.27), STS and Performance (r=.45), STS and Achievement (r=.42). 

Additionally, significant correlations at the same level were found between GAC+MS 

and Performance (r= .63), GAC+MS and Achievement (.55), and Performance and 

Achievement (.73). 

 In multiple regression analyses, the three indicators together accounted for 57.4% 

of the variance of Achievement. The working memory factors together contributed a 

significant 12.3% of the variance of Achievement above and beyond Performance, while 

Performance contributed a unique and significant 9.9%. The unique contribution of STS 

was 4.6% of the variance, while the unique contribution of GAC+MS was 7.5%. 

The fit of a series of nested models was then compared, as shown in Table 20. 
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Table 20 

Fit of Full and Nested Models: LNS, FDS, Performance, and Achievement 

Model LL BIC (LL) 

Full (no paths constrained) -16150.693 32963.66 

Perf. path constrained -16189.077 33033.67 

STS path constrained -15848.56 33017.84 

GAC+MS constrained -15854.81 33030.86 

Both WM paths constrained -15864.34 33050.70 

 

A similar path model that differed only in that it included BDS items in place of 

LNS items was also tested. In the full model, factor reliabilities (R2) ranged from 0.77 for 

GAC+BO to 0.95 for Achievement. Correlations were significant at the 0.01 level for 

STS and GAC+BO (r=.22), STS and Performance (r=.41), and STS and Achievement 

(r=.39). In addition, correlations that were significant at the 0.01 level were found 

between GAC+BO and Performance (r=.36), GAC+BO and Achievement (r=.50), and 

Performance and Achievement (.62). The paths from all three factors to Achievement 

were significant at p<0.05, as is shown in Table 21. 

Table 21 

Paths from Working Memory and Performance Factors to Achievement 

Path Co-efficient s.e. z-value p-value 

STS to Achieve. 3.75 0.89 4.24 0.00 

GAC+BO to Achieve. 4.28 0.69  6.17 0.00 

Perf. to Achieve. 8.39 1.07 7.81 0.00 
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The fit of a series of nested models was then compared with that of the full model, 

as shown in Table 22. 

Table 22 

Fit of Full and Nested Models: FDS, BDS, Performance, and Achievement 

Model LL BIC (LL) 

Full (no paths constrained) -14929.44 31103.03 

Perf. path constrained -14976.91 31204.56 

STS path constrained -14624.22 31115.37 

GAC+BO constrained -14954.11 31154.39 

Both WM paths constrained -14963.56 31174.08 

 

Working Memory, Verbal, and Achievement Factors 

The first model included only FDS and LNS of the working memory factors, and 

the following factors were specified: STS, GAC+MS, Verbal and Achievement. A path 

model was specified, with Achievement as the only endogenous factor for the associated 

exogenous factors. Reliabilities (Standard R2) for all four factors were in the 0.8-0.9 

range.   

Correlations between the mean factor scores were significant at 0.01 for STS and 

GAC+MS (r=.29), STS and Verbal (r=.48), STS and Achievement (r=.48). Additionally, 

significant correlations at the same level were found between GAC+MS and Verbal (r= 

.57), GAC+MS and Achievement (.61), and Verbal and Achievement (.76). 

The paths from the Working Memory factor and Verbal factor to Achievement 

were all significant at p<0.05, and are shown in Table 23. 
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Table 23 

Paths from Working Memory and Verbal Factors to Achievement 

Path Co-efficient s.e. z-value p-value 

STS to Achieve. 5.19 1.23 4.24 0.00 

GAC+MS to Achieve. 4.73 0.90  5.25 0.00 

Verbal to Achieve. 16.44 2.04 8.05 0.00 

 

The fit of a series of nested models was then compared with the full model. As 

shown in Table 24, the full model provided the optimal fit. 

Table 24 

Fit of Full and Nested Models: FDS, LNS, Verbal, and Achievement 

Model LL BIC (LL) 

Full (no paths constrained) -15234.24 31738.27 

Verb. path constrained -15293.74 31861.96 

STS path constrained -15241.07 31752.23 

GAC+MS constrained -15246.6 31763.74 

Both WM paths constrained -15253.32 31777.74   

 

In the multiple regression analysis using the mean factor scores, 62.9% of the 

variance of Achievement was accounted for by Verbal, STS, and GAC+MS.  Verbal 

accounted for a significant 22.6% of the variance above and beyond the working memory 

factors, while GAC+MS accounted for a significant 1.4% above and beyond the other 

factors, and STS a significant .3%. The two working memory factors together uniquely 

contributed a significant 1.8%. 

 

 



 61 

Working Memory, Verbal, Performance, and Achievement Factors 

A model including LNS and FDS indicators along with Verbal, Performance and 

Achievement was estimated, with Achievement as the sole endogenous variable. The 

Standard R2 reliabilities of all factors included in the model (STS, GAC+MS, 

Performance, Verbal, and Achievement) were above 0.80, and the paths from all 

exogenous variables to Achievement were all significant at p<0.05, as shown in table 25. 

Table 25 

Paths from Working Memory, Performance, and Verbal Factors to Achievement 

Path Co-efficient s.e. z-value p-value 

STS to Achieve. 5.43 1.20 4.54 0.00 

GAC+MS to Achieve. 5.20 0.98 5.31 0.00 

Perf to Achieve. 5.29 1.33 4.06 0.00 

Verbal to Achieve 13.95 1.89 7.39 0.00 

 

Table 26 compares the fit of the full and nested models tested. 

Table 26 

Fit of Full and Nested Models: FDS, LNS, Verbal, Performance, and Achievement 

Model LL BIC (LL) 

Full (no paths constrained) -23155.16 48239.92 

STS path constrained -23168.49 48267.68 

GAC+MS constrained -23161.35 48252.81 

Perf path constrained -23161.34 48252.80 

Verbal path constrained -23199.69 48332.68 

Both WM paths constrained -23176.20 48283.74 
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Table 27 shows the correlations between the mean factor scores. 

Table 27 

Intercorrelations Among Factor Mean Scores in Final Model 

 STS GAC+MS P V A 

STS -- .23** 40** .39** .46** 

GAC+MS -- -- .53** .46** .58**  

P -- -- -- .59** .64** 

V -- -- -- -- .71** 

A -- -- -- -- -- 

**p<.01 

 

Multiple regression using the mean factor scores showed that STS, GAC+MS, 

Performance and Verbal accounted for 64.2% of the variance of Achievement. All factors 

made a significant unique contribution to the variance of Achievement (R2 change), with 

STS contributing 2.1%, GAC+MS contributing 4.3%, Performance contributing 2%, and 

Verbal contributing 10.6%. The unique contribution of the two WM factors together was 

6.2%, compared to 19.2% for Verbal and Performance together. Additionally, when 

controlling for Verbal, WM had greater explanatory power than Performance, with 

Performance adding 7.5%, and the two WM factors adding 11.7%. 

Posterior Classification of Participants 

 Finally, the frequency count of participants into the different levels of the latent 

factors was examined. The seven levels of STS and GAC + MS can be labeled 1-7 with 1 

representing that group of participants with the lowest ability level and 7 representing the 

group with the highest ability level. For each of the two working memory factors, both 
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the second and third levels of the factors were completely devoid of participants. In other 

words, there was a marked gap between the first and fourth levels in the distribution of 

participants. 
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CHAPTER FOUR 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary of Findings 

This study provided clarification of the factor structure of working memory, and 

its relationship with intelligence and achievement. Factors that are common across 

multiple working memory tasks (specifically, STS and GAC) were found to make an 

important contribution to both intelligence and achievement, while task-specific factors 

(BO and MS) were not. Furthermore, in this study the working memory factors combined 

were clearly better predictors of achievement than traditional measures of intelligence 

(Verbal and Performance). At the same time, results of this study indicate that both of 

these traditional measures of intelligence make significant and unique contributions to 

academic achievement above and beyond those of the working memory factors. 

The most unique aspect of this study was the examination of the relationship 

between independent latent working memory factors and a latent achievement factor. 

Unlike previous studies which did not differentiate between the role of STS and the role 

of GAC, this study was able to provide more precise information about the nature of 

working memory’s contribution. Thus, it was possible to discern that the general factors 

of GAC and STS both made substantial unique contributions and that the contributions of 

the more specific mechanisms were much lesser. 

The use of an item-level analysis facilitated this greater level of precision. Each 

trait was identified by multiple items, and multiple traits were identified through the 

concurrent analysis of items with different task demands. Such an approach would not 
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have been possible had the analysis occurred at the task level, because of the difficulties 

inherent in designing the range of task demands necessary to identify each trait.  

The use of generalized latent variable modeling allowed for the identification of 

latent traits according to the axiom of local independence for item responses. This axiom 

states that any association (linear correlation or otherwise) existing between item 

responses is solely attributable to a latent trait. In traditional structural equation modeling, 

traits are identified only indirectly through the pattern of correlations between tasks. 

Thus, in the vast majority of previous latent-level investigations into the relationship 

between working memory and important criteria such as intelligence and achievement, 

the working memory factors have been correlated rather than orthogonal. For example, 

Oberauer et al. (2003) defined storage in the context of processing, updating, short-term 

memory and shifting as correlated factors, while Miyake et al. (2000) defined shifting, 

updating, and inhibition. In such designs, variance that is shared between different kinds 

of tasks cannot be examined. However, it is clear that each kind of task has multiple 

sources of variance, some of which are shared with other working memory tasks, and 

some of which are task-specific. Moreover, that portion of variance shared with other 

kinds of tasks is likely to come from multiple sources; for example, shifting and updating 

tasks are likely to share some variance based on their shared demands of storage, and 

some variance based on their shared demands on GAC. However, due to the limitations 

of this correlated factors approach, it is impossible to distinguish between these two 

sources. 

Theoretically, an orthogonal factors approach in which each factor is defined by 

multiple tasks sharing particular task demands is also possible. However, this approach is 
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somewhat impractical due to difficulties inherent in task design. Each orthogonal factor 

would need to be defined by at least three observed indicators, and most observed 

indicators would have at least three underlying factors (STS, GAC, and a more specific 

mechanism). Designing such a range of tasks to reliably measure such a range of factors 

is inherently difficult. 

 As previously stated, this study builds on the earlier work by Luo et al. (2010) in 

which orthogonal factors are defined by items rather than tasks. Many of the earlier 

results were replicated, and additional clarification of the role of BO was obtained. 

Additionally, this study was able to examine the role of the working memory components 

in academic achievement, independent of the contributions of traditional measures of 

intelligence. By specifying a path model in which the working memory factors, 

Performance, and Verbal were exogenous variables, and Achievement was a dependent 

variable, the present study was also able to evaluate the role of working memory as a 

whole relative to Performance and Verbal ability. Specifically, it was found that Verbal is 

the superior predictor of academic achievement, but that the combined working memory 

factors are superior to Performance. 

 The analysis began with a four-factor model of working memory; however, it is 

worth noting that the key results are based on a two-factor model. This modification was 

necessitated by practical considerations: the high number of latent factors and observed 

indicators simply overwhelmed the capacity of the current software. Therefore, it became 

necessary to include a more streamlined working memory, which included only two 

factors and two types of tasks. The FDS items were selected because of their status as 

putatively pure indicators of STS; while the LNS items were selected over the BDS items 
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because of their higher loadings on the GAC factor. Together, the FDS and LNS items 

therefore draw on both of the general working memory factors more intensively than had 

another combination of indicators been selected. 

 At the same time, it should be emphasized that basing the most important results 

on a two- rather than four- factor model did not result in compromised results. Modeling 

of subsets of working memory factors indicated that neither of the specific factors made a 

significant contribution to any of the criterion variables. This fact was validated and 

cross-validated by the multitude of methods used to assess the unique contributions of 

each component. Therefore, contributions from what has been termed the GAC+MS 

factor can be assumed to result from the GAC factor almost exclusively.  

 Important clarification of the role of Performance was also provided by this study. 

Luo, Thompson and Detterman (2003) had earlier reported that Performance played a 

negligible unique role in predicting academic achievement, relative their other predictors. 

More specifically, in the multiple regression part of their analysis, they found that 

Performance explained the lowest proportion of achievement (R2change= 0.05, compared 

to 0.15 for working memory and 0.18 for processing speed). Similar results were found in 

the structural equation modeling part of their analysis, with Performance uniquely 

contributing only 0.12 of the variance of their achievement factor. Important similarities 

exist between the current study and the study by Luo et al. (2003); both used the same 

indicators for the Performance, and Verbal factors. However, the Luo study had a number 

of limitations relative to the current study: it was a task-level analysis that treated 

working memory as a unitary construct, and it used traditional structural equation 

modeling. The reliance on a unitary model for working memory means that the Luo study 
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was unable to identify differential roles for multiple working memory mechanisms. 

Additionally, latent factors were addressed by means of traditional structural equation 

modeling; therefore this study was unable to provide tangible individual latent trait 

scores, and is open to the usual criticisms of structural equation modeling, which were 

noted in the first chapter. 

 Consistent with the earlier study by Luo et al. (2010) that used the same sample 

and many of the same measures, an important finding of this study is that the general 

working memory mechanisms are predictive of intelligence and achievement in a way 

that the more specific mechanisms are not. While the earlier study found some 

suggestions that BO may have some predictive power, this was not replicated in the 

current study. Therefore, the current investigation provides substantiation to the idea that 

working memory’s importance in relation to intelligence and achievement rests upon the 

general mechanisms rather than task-specific ones. If this indeed is the case, a better 

understanding of the relationships among these important psychological constructions 

may be facilitated by a research focus on variance shared by multiple tasks of working 

memory than by a focus on more specific executive functions (e.g., switching). Only 

future studies that analyze a greater range of working memory tasks in a manner whereby 

both shared and specific sources of variance can be measured will allow us to determine 

conclusively if this is the case. 

 As previously stated, the present study builds on the previous investigation by 

Luo et al. (2010). Both studies found a clear role for the generalized mechanisms of STS 

and GAC in predicting the criterion variables. Luo et al.’s study also reported some 
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ambiguity with regard to the role of BO, and speculated that this ambiguity might be due 

to the lower reliability of the BO factor. 

 Another interesting finding was the apparent gap in the distribution of the latent 

traits. As previously stated, the process of posterior classification of participants assigns 

participants to ability levels based on their individual response patterns; examination of 

the resulting frequency distribution revealed zero-frequencies in the second- and third- 

lowest ability levels. The apparent gap between the first (ie. lowest) and fourth levels of 

the trait is somewhat consistent with the earlier study by Luo et al. (2010), in which the 

two lowest levels of GAC were adjacent to an almost empty (N=1) third category and 

thus “outliers” with regard to the rest of the distribution.  

 These results should be interpreted with caution, given that both studies used the 

same sample and may therefore merely reflect sample-specific characteristics. However, 

it is also possible that the apparent gap reflects a discontinuity in the distribution of the 

trait. This would be consistent with the so-called law of diminishing returns in which 

higher between-test correlations have been observed at the lower end of the ability 

continuum. Therefore, those at the low ability end may be isolated from the rest of the 

population in terms of their latent ability traits, and these significant differences in trait 

levels may have implications for performance on a number of different tests. 

 Compared to the earlier study by Luo et al. (2010), this study provides a clearer 

picture of the role of specialized working memory mechanism vis-à-vis generalized 

working memory mechanisms.  Luo et al. reported inconsistency in his findings, such that 

nested models that included all working memory factors along with the criterion g factor 

suggested that the BO and MS factors were expendable, while the path estimates for 
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these factors to the g factor were statistically significant, as were correlations between the 

mean factor scores of the predictor and criterion variables. In contrast, there is less 

ambiguity about the lesser importance of these specialized mechanisms in the current 

study. While the lower reliabilities of these mechanisms (in both studies) may contribute 

to the inconsistency of the results, overall results of the current study provide 

substantiation to the hypothesis that it is the more broadly applicable working memory 

mechanisms that provide working memory tasks with their predictive power. 

Conclusions and Recommendations 

 The use of generalized latent variable analysis allowed for comparison of the fit 

of discrete and continuous latent variables in relation to the observed data. The fact that 

discrete traits, which may best be represented as distinct clusters separated by varying 

intervals, better accounted for the observed data on a uniform basis is an interesting 

finding in itself. As discrete traits may reflect a heterogeneous population, it is possible 

that qualitative differences exist between different ability groups. As previously noted, 

the only two studies that have used general latent variable analysis to investigate working 

memory trait distribution have relied upon the same sample. Therefore, it is important 

that future investigations in this area include different ages and other demographic 

characteristics. 

 Some researchers in the psychometric tradition have been critical of a reductionist 

approach to studying intelligence. A major charge is that this line of inquiry has been 

“generally limited to laboratory demonstrations” (Ackerman & Beier, 2005, p 125) and 

not found any real –world applications. However, the current study illustrates the 

potential of a reductionist approach in terms of enabling us to predict individual 
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differences in an academic setting. If the mechanisms of working memory described in 

this study were not predictive of real-world performance, they would indeed be of limited 

interest; however, this study clearly shows that GAC and STS account for a substantial 

proportion of the variance in the achievement factor. Therefore, identifying ways to 

improve academic performance must include further micro-level analysis.  As the 

working memory mechanisms themselves become better validated, they in turn may be 

used to explain more complex and ambiguous behaviors such as those found in 

workplaces and schools (Deary, 2001; Conway, 2005). A very practical implication of 

this work is that improving performance on memory span tasks through the explicit 

teaching of rehearsal strategies may result in improved performance on a variety of 

verbal tasks, such as mathematics and comprehension. Further, learning effective 

rehearsal strategies may be necessary foundation in order to fully benefit from standard 

learning and reading interventions. For example, children who are unable to memorize 

the phonemic sequences of unfamiliar words will be at a disadvantage in vocabulary 

acquisition (Conners et al., 2008).  

 It is worth emphasizing that working memory, intelligence, and academic 

achievement are all very broad constructs, and this study defined these constructs in a 

very circumscribed way. Further research into the role of working memory mechanisms 

in academic achievement should include a wide variety of working memory tasks—

perhaps including dichotic listening as well as other span tasks (Heitz, Unsworth, & 

Engle, 2005) such that a fuller picture of the mechanisms determining performance can 

be obtained. Similarly, future research could substitute different kinds of achievement 

tasks. 
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 Perhaps more importantly, the present study illuminates the potential of the 

blending of item-level analysis with the new technology of generalized latent variable 

modeling. Just as the current study was able to identify some particular working memory 

mechanisms instrumental in academic performance, analysis using other markers of 

intelligence—such as the WISC-IV subscales – and other markers of achievement will 

increase our understanding of the relationships among working memory, intelligence, and 

achievement even more. Furthermore, future research may include currently ambiguous 

constructs such as fluid intelligence (as indicated by item scores on the Performance 

subtests or Ravens Progressive Matrixes, for example). When combined with models of 

better-understood constructs such as working memory, such work has the potential to 

shine new light on very complex psychological constructs. 
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