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 Intraindividual variability refers to short-term fluctuations in performance that 

may be indexed as trial-to-trial variability on response time (RT) tasks. A growing body 

of evidence suggests that such variability may be a sensitive indicator of the integrity of 

prefrontal cortical regions. This possibility was tested in a broad clinical sample by 

investigating the relationship between intraindividual variability on the Wisconsin Card 

Sorting Test and a large battery of executive functioning tasks using mathematical 

models of RT variability. The executive functioning tasks predicted intraindividual 

variability with a large effect size. The relationship between intraindividual variability 

and cognitive control tasks was marginally higher than the intercorrelations of the tasks 

themselves. Thus, intraindividual variability demonstrates considerable convergent 

validity with more traditional neuropsychological assessment techniques. Trial-to-trial 

variability was specifically related to measures of set shifting and this relationship was 

only partially mediated by more basic attentional functions. The findings of this study are 

consistent with the interpretation that intraindividual variability in response time may 

index the consistency with which individuals are able to regulate various cognitive 

control subprocesses involving attentional control, active engagement of response sets, 

and the ability to suppress task irrelevant information in the pursuit of a self-selected 



v 

 

 

goal. The primary neurostructural substrates of RT variability may lie within prefrontal 

cortical regions including ventrolateral, dorsolateral, and anterior cingulate cortex. Future 

research may set the stage for a new clinical measurement tradition based on the 

application of intraindividual variability data.  
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CHAPTER 1 

INTRODUCTION 

Historically, neuropsychology research has focused on mean levels of 

performance to the relative exclusion of other methodological approaches (MacDonald, 

Nyberg, & Bäckman, 2006). This is unfortunate given significant evidence that 

intraindividual performance variability both within and across occasions is substantial in 

magnitude (Nesselroade & Salthouse, 2004), can be reliably measured (Hertzog, Dixon, 

& Hultsch, 1992), and may obscure the detection of meaningful differences by measures 

of central tendency (Rabbitt, Osman, Moore, & Stollery, 2001). Indeed, some researchers 

have noted the substantial problem variability poses to classical theories of measurement 

and typical assessment practices (Lindenberger & von Oertzen, 2006). The study of 

variability is not merely a theoretical curiosity; a substantial body of work indicates that 

variability data can contribute meaningfully to clinical diagnosis (Kaiser et al., 2008; 

Leth-Steensen, King Elbaz, & Douglas, 2000), the prediction of important outcomes like 

mortality (Shipley, Der, Taylor, & Deary, 2006), and the quantification of individual 

differences on neuropsychological tasks (Heathcote, Popiel, & Mewhort, 1991) above 

and beyond the mean.  

Intraindividual variability in response time is also related to a variety of clinical 

conditions including attention deficit hyperactivity disorder (Hervey et al., 2006), closed 

head injury (Stuss, Murphy, Binns, & Alexander, 2003), dementia (Hultsch, MacDonald, 

Hunter, Levy-Bencheton, & Strauss, 2000), mild cognitive impairment (Bielak, Hultsch, 

Strauss, MacDonald, & Hunter, 2010), schizophrenia (Rentrop et al., 2010), and other 

forms of mental illness (Bunce, Handley, & Gaines, 2008). Some authors have attributed 
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increased variability to impairment in executive functioning (West, Murphy, Armilio, 

Craik, & Stuss, 2002) and for good reason: the magnitude of performance variability on 

response time tasks parallels the degree of frontal involvement in dementia subtypes 

(Murtha, Cismaru, Waechter, & Chertkow, 2002), is associated with damage to the 

frontal lobes (Stuss et al., 2003), and appears to be meaningfully related to other 

measures of this cognitive domain (Lövdén, Li, Shing, & Lindenberger, 2007). Studies 

utilizing both structural and functional neuroimaging have converged on the 

interpretation that the prefrontal cortex is a key determinant of variability in response 

time (MacDonald et al., 2006).  

There are few investigations of the relationship between intraindividual variability 

and well-established measures of executive functioning, despite evidence that certain 

types of performance variability may be sensitive measures of the efficiency of executive 

control processes (Bellgrove, Hester, & Garavan, 2004). The vast majority of existing 

studies restrict their analyses to discrete clinical syndromes (e.g., dementia of the 

Alzheimer’s type, focal brain lesions), which limits the generalizability of findings. 

Furthermore, most clinical investigations make use of relatively crude indices of 

variability, such as the intraindividual standard deviation (iSD), in combination with 

regression based statistical control approaches (Ram & Gerstorf, 2009). Such techniques 

may be statistically inappropriate and theoretically problematic (Salthouse & Berish, 

2005; Schmiedek, Lövdén, & Lindenberger, 2009; Slifkin & Newell, 1998). This study 

uses contemporary statistical techniques to investigate the relationship between 

intraindividual variability and executive functioning in the service of clarifying the 

practical applications of intraindividual variability in a clinical context.  



3 

 

 

CHAPTER 2 

LITERATURE REVIEW 

A Taxonomy of Variability 

Before discussing the theoretical, methodological, and clinical significance of 

intraindividual variability, it is first necessary to define what is meant by this term. 

Variability is not a unitary construct and at its broadest level, variability can exist 

between persons, between measures, or between occasions (Cattell, 1966). According to 

this division, performance variability may be defined in three primary ways: between 

individual variability (diversity), within individual across-trial variability (dispersion), 

and within individual across-occasion variability (consistency; Stuss, Pogue, Buckle, & 

Bondar, 1994). Each type of variability carries with it a unique history of application in 

the behavioral sciences and a set of practical and methodological considerations.  

Variability existing between persons is inter-individual variability and is typically 

used to index differences in individual performance. This sort of variability is 

traditionally measured by the use of mean level comparisons of performance on one 

measurement occasion and constitutes the great bulk of cognitive and neuropsychological 

research (MacDonald et al., 2006). In the taxonomy presented above, this sort of 

variability is known as diversity. Variability existing within persons is known as intra-

individual variability and may be measured by comparison of performances on different 

tasks (or trials) on a single measurement occasion, or as fluctuations in performance on 

one task across occasions (MacDonald et al., 2006). This type of variability encompasses 

both dispersion (when measured across trials) and consistency (when measured across 

occasions). Although it has been historically neglected, the study of intraindividual 
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variability holds with it tremendous promise in helping to explicate individual 

differences, development, and human behavior in general (Nesselroade & Ram, 2004). 

This type of variability is characteristic of all self-organizing dynamic systems (Li, 

Huxhold, & Schmiedek, 2004) and given that humans are self-organizing dynamic 

systems (Ford, 1994), variability is inherent in all aspects of human behavior and 

cognition. 

Intraindividual variability itself may exist in a number of different forms. The 

notion of “intraindividual dynamics” encompasses this type of within person variation as 

it exists across time, in both univariate and multivariate forms (Li et al., 2004). The 

process of becoming (Ford, 1994) or developing (Li et al., 2004) refers to change that is 

typically enduring and takes place across months, years, or decades (e.g., 

neuromaturation, aging, complex skill acquisition). In contrast, being (Ford, 1994) or 

functioning (Li et al., 2004) takes place over a comparably shorter time span (e.g., days, 

hours, minutes). This type of variability has been called inconsistency, “lack of 

processing robustness”, “wobble”, or “lability” (Hultsch, Strauss, Hunter, & MacDonald, 

2008) and refers to processes such as rapid fluctuations in moods, attention, or 

neuromodulatory conditions.  

Intraindividual variability in functioning (i.e., short term within person variations 

in functioning) can be both adaptive and maladaptive (Ram & Gerstorf, 2009). Within 

intraindividual dynamics, Li and colleagues (2004) discuss three types of adaptive 

variability, typically observed on tasks that are amenable to strategy use. Plasticity (large 

gains as a result of learning after exposure to a task), diversity (using a multitude of 

different exploratory strategies in order to optimize performance during task acquisition), 
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and adaptability (quickly recovering by adapting when optimal functioning is challenged) 

can all be adaptive responses to novel situations such as completing a neuropsychological 

task. In contrast, random processing fluctuations around a given maximum level of 

functioning indicate a non-adaptive form of variation (MacDonald, Li, & Bäckman, 

2009). 

Much of the research on this type of maladaptive intra-individual variability has 

focused on within person variation on response time tasks. The measurement of 

variability in response latencies on such measures provides a precise index of rapidly 

changing internal processes and their effects on behavioral output. Extremely short-term 

performance variations such as those observed on consecutive trials of a response time 

task are likely subserved by different underlying sources of systematic variation than 

those that occur on the scale of days or months (Ram, Rabbitt, Stollery, & Nesselroade, 

2005). The study of both types of variability (i.e., variability over shorter or longer 

periods) has proved to be fruitful, but there is evidence to suggest that endogenous 

sources of variation (e.g., those that underlie individual differences in brain functioning) 

are best captured over short intervals such as trial-to-trial fluctuations in performance on 

cognitive tasks (MacDonald et al., 2009).  

This sort of short-term processing lability seems to be almost invariantly 

associated with injury (Stuss et al., 1994) and disease (Holtzer, Verghese, Wang, Hall, & 

Lipton, 208). It is also indicative of poorer cognitive functioning (Bielak et al., 2010), 

especially executive functioning (de Frias, Dixon, Fisher, & Camicioli, 2007; Murtha et 

al., 2002; Stuss et al., 2003; West et al., 2002). For these reasons among others, the study 
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of short-term, trial-to-trial variability in response time may be particularly informative 

about endogenous (i.e., neurological) influences on test performance.  

A Threat to the Measurement of Central Tendency 

What are the reasons we might want to consider an intraindividual approach to 

studying variability? This represents a distinct departure from the prevailing emphasis of 

the field. The literature is replete with examples of the knowledge we have gained by 

measuring diversity with measures of central tendency. Although we have learned a great 

deal from this method, when within person variation is large, the analysis of mean levels 

of performance can lead to incorrect estimates of between group differences (Hultsch & 

MacDonald, 2004). Regarding response time tasks specifically, some authors have gone 

so far as to assert that mean levels of performance are little more than gross summary 

statistics that are actually the products of variability themselves (Rabbitt et al., 2001). 

Much in the same way that classical Newtonian physics has proved useful yet inadequate 

to completely describe the physical universe (Hawking, 1998), it is quite possible that an 

exclusive emphasis on between person variation indexed by measures of central tendency 

does no better when attempting to describe many neuropsychological phenomena. In 

some situations in fact, Newton’s system makes wildly inaccurate predictions and fails to 

adequately describe known phenomena (Hawking, 1998); the same may be said of 

summary statistics such as the mean under certain circumstances (Nesselroade, 2002).  

There are a number of conditions under which the mean may be misleading. 

Consider an example from the physical sciences such as the analysis of light spectra 

involved in photosynthesis. Although it is possible to determine the mean wavelength of 

light absorbed by chloroplasts, this does little to help us understand the underlying 
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distribution of light energy involved in this crucially important process. Due to the unique 

chemical characteristics of chlorophyll molecules, the distribution of light absorbed by 

these compounds is bimodal in nature (specifically clustering around approximately 

450nm and 675nm; Campbell & Reece, 2010) and is thus poorly described by its mean. 

Similarly, the mean may represent a minority of the population when considering 

presidential approval ratings, because they are likely to be distributed bimodally in 

correspondence with political party (Balota & Yap, 2011). Both of these examples show 

the problems inherent in attempting to represent certain types of distributions with 

summary statistics such as the mean.  

Reaction time probability density functions are another type of distribution that is 

poorly described by measures of central tendency because they are almost always 

positively skewed (Luce, 1991). When analyzing highly skewed data, using statistics 

such as the mean can be inappropriate for any number of reasons and can mask important 

differences in response patterns (Andrews & Heathcote, 2001; Miller, 1991). Balota & 

Spieler (1999) illustrated this phenomena using mathematical modeling to capture the 

entire shape of response time probability density functions on three different word 

recognition tasks.  

Figures 1a and 1b demonstrate a situation in which relying on measures of central 

tendency may be appropriate. In this scenario, the overall shape of the two distributions is 

quite equivalent but they are shifted with respect to the mean and here, the mean paints a 

relatively complete picture of the data. In other circumstances though, such an analysis 

may be inappropriate. Comparing Figure 1a with Figure 1c shows a comparable shift in  
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Figure 1. Simulated Distribution Shapes (adapted from Balota & Yap, 2011,p. 161). 

means that is caused by the inclusion of a small percentage of observations in the tail of 

distribution cthat have little effect on the modal portion and a disproportionate effect on 

the mean. Similarly, there can be opposing effects on the modal and tail portions of a 

distribution that are significant yet cause no observable changes in the mean of the 

probability density function (Figure 1a vs. Figure 1d). When using measures of central 

tendency alone, researchers could conclude that the manipulation was of no consequence 
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to participants’ performance when in fact, there was actually a significant effect. All of 

the patterns documented in this figure have now been observed empirically (Balota & 

Yap, 2011). 

  In other circumstances, there may simply be a lack of correspondence between the 

mean and other variables under investigation, for whatever reason. The worst 

performance rule in intelligence testing serves as a useful example of such a 

phenomenon. As the theory goes, on multi-trial reaction time tasks, an individual’s worst 

performance is more predictive of general intelligence (i.e., g) than their best 

performance or average performance (Alderton & Larson, 1994). This theory has been 

the subject of some investigation in the intelligence testing literature and has been 

overwhelmingly supported by most of the studies that have examined it (Coyle, 2003). 

According to this theory, analysis of an individual’s average performance would be far 

less informative than examining their worst performance. Although the mechanisms 

underlying this lack of correspondence have yet to be entirely delineated, they are 

hypothesized to involve factors such as lapses in working memory or individual 

differences in “neural oscillations” (Coyle, 2003). Both of these processes have been 

implicated in intraindividual variability (Kaiser et al., 2008; Li & Lindenberger, 1999). 

If substantial intraindividual variability exists on a cognitive measure (either from 

trial-to-trial or from one testing occasion to the other) and does not simply represent 

random measurement error, this raises serious concerns about the accuracy of approaches 

that do not take this variability into account. The concept of a “true score” for instance 

implies a fixed quantity of a given variable that may differ between individuals or over 

long periods of time, but which is relatively invariant within an individual on a specific 
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testing occasion (Allen & Yen, 2001). When measuring such a fixed quantity, mean 

levels of performance may be a perfectly acceptable indicator of underlying cognitive 

abilities. The presence of substantial within person variability on the other hand raises 

serious questions about the practicality or tenability of true score values or of classical 

test theory itself (Lindenberger & von Oertzen, 2006). A true score should not vary from 

moment to moment if it can be reliably measured by mental tests that may take several 

hours to complete.  

In the neuropsychological context, the existence of substantial within person 

variability in test performance might undermine the typical assumptions we make about 

the relationship between test scores and the neurological substrates that underlie an 

individual’s performance (Salthouse & Berish, 2005). If neuropsychological tests 

correspond to underlying cortical structures that are putatively invariant from one 

moment to the next, how could we account for substantial variability within one testing 

occasion if it is not due to measurement error? Though neuromodulatory conditions may 

change rapidly, these changes are presumably in the service of maximizing functional 

capacity around some asymptote of optimal performance (hence preserving stability). 

Substantial within person variability could also result in a number of problems at the 

pragmatic level. For example, in the presence of substantial variability an individual 

might be classified as intact on one testing occasion and impaired on another occasion; a 

serious problem given the substantial legal and personal consequences that often follow a 

neuropsychological evaluation. If test scores correspond to the presumably static latent 

traits they purport to measure, then substantial within person variability in test 
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performance represents a conundrum that deserves explanation (Nesselroade & 

Salthouse, 2004).  

An Alternative to the Measurement of Central Tendency 

Recent work suggests that intraindividual variability exists ubiquitously and is 

quite substantial in magnitude (Nesselroade & Salthouse, 2004). In this study, the authors 

examined the performance of 204 adults from 20 to 91 years of age on a series of 

perceptual motor tasks. They took measurements on the same tasks across three 

occasions within a two-week period. The results indicated that intraindividual variability 

(as averaged both between sessions and across sessions) accounted for approximately 

37% to 53% of the between persons variability. Moreover, those who varied more within 

a session also varied more between sessions, leading these authors to conclude that 

variability may be interpreted as a “trait-like” characteristic of an individual. This study is 

only one example among many consistent with the notion that there is significant 

intraindividual variability both within sessions and between sessions (Hultsch et al., 

2000; Li, Aggen, Nesselroade, & Baltes, 2001). 

It is possible that intraindividual variability simply represents random sources of 

measurement error. If this were the case, we would expect variability from one occasion 

to be unrelated to that on other occasions (which is definitional of error from a classical 

test theory point of view; Allen & Yen, 2001). The “trait-like” nature of the data 

presented above suggests that this is not the case. Other studies have also indicated that 

intraindividual variability can be measured reliably over long periods of time (Hertzog et 

al., 1992). And that intraindividual variability within a measurement occasion is 
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comparable to and correlates highly with that between occasions (Rabbitt et al., 2001). In 

other words, measures of dispersion correlate highly with measures of consistency. 

The possibility that within person variability simply represents random error 

would also preclude it from having meaningful relationships with criterion variables; 

however, the literature suggests that this is also untenable. Intraindividual variability 

demonstrates significant correspondence with many variables of interest including 

parameters of physical health (Wu et al., 2011), information processing robustness (Li et 

al., 2004), and cognitive performance (Lövdén et al., 2007). Response time variability has 

also been associated with a variety of pathological conditions including disease (Bruce, 

Bruce, & Arnett, 2010) and traumatic brain injury (Stuss et al., 1994).  

It has been argued that the relationship of variability parameters such as the iSD 

or intraindividual coefficient of variation (ICV) to meaningful outcomes is simply an 

artifact resulting from their high correlation with average (i.e., mean level) performance 

(Christensen et al., 2005; Salthouse & Berish, 2005). In numerous investigations though, 

powerful relationships have been found even after partialing out such effects (Dixon et 

al., 2007; Hultsch et al., 2000; MacDonald, Hultsch, & Dixon, 2003). It should be noted 

that the statistical methodology used by some of these authors to disentangle variability 

from mean levels of performance has been criticized by others (Salthouse & Berish, 

2005), and may be inadequate in certain circumstances (Schmiedek et al., 2009); 

nevertheless, such debates do not warrant automatic dismissal of these findings. Other 

studies have also found meaningful relationships between intraindividual variability and 

important outcomes when statistically controlling for mean levels of performance. 

Perhaps the most striking example comes from the work of Macdonald, Hultsch, and 
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Dixon (2008) who found that intraindividual response time variability predicts impending 

death as many as 15 years in advance independent of cardiovascular health, demographic 

indicators, level of cognitive performance, and mean response time. Intraindividual 

variability also precedes and predicts impending cognitive decline before it is evident in 

mean levels of task performance (Lövdén et al., 2007). Several studies examining the 

factor structures of experimental tasks measuring response time latency vs. response time 

variability have also documented a divergence between these two outcome measures in 

different clinical populations (Kelly, 2000; Kremen, Seidman, Faraone, Pepple, & 

Tsuang, 1992; Mirsky, Anthony, Duncan, Ahearn, & Kellam, 1991).  

  With the above caveats, several conclusions can be drawn from the present 

review. First, intraindividual variability in response time on various types of cognitive 

tasks is sizable and can be reliably measured. Second, intraindividual variability seems to 

follow a characterological or trait-like association, such that those who are more variable 

on one occasion continue to be more variable on other occasions. Third, the degree of 

variation across trials (dispersion) is comparable to and related with that across occasions 

(consistency). Fourth, intraindividual variability cannot be dismissed simply as a 

statistical artifact and appears uniquely predictive of important outcomes including death. 

Having established intraindividual variability in response time tasks as a valid, reliable, 

and potentially unique measure, the next question becomes one of significance: How has 

the study of intraindividual variability contributed to our understanding of 

neuropsychological phenomena and clinical conditions? 
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Intraindividual Variability In Clinical Conditions 

Hundreds of papers in the neuropsychology and cognitive science literatures have 

investigated the relationship of intraindividual variability in response time to a diverse 

array of phenomena including intelligence (Deary, Der, & Ford, 2001), semantic priming 

(Balota, Yap, Cortese, & Watson, 2008), neuropsychological test performance (Heathcote 

et al., 1991), aging (Bielak et al., 2010; Lövdén et al., 2007; MacDonald, Nyberg, 

Sandblom, Fischer, & Bäckman, 2008), and everyday problem solving (Burton, Strauss, 

Hultsch, & Hunter, 2009). With the exception of aging (which in itself may be considered 

a type of central nervous system pathology; Bäckman, Nyberg, Lindenberger, Li, & 

Farde, 2006), the current effort is restricted to patterns of intraindividual variability in 

response time tasks as they relate to various pathologies of the central nervous system. In 

that vein, this section presents studies from research on aging, mild cognitive impairment, 

dementia, traumatic brain injury, schizophrenia, attention deficit hyperactivity disorder, 

and general psychiatric disturbance as they are informative to the study of intraindividual 

variability in general. 

Across the life span, intraindividual variability in response time tasks forms an 

approximately U shaped function (Williams, Hultsch, Strauss, Hunter, & Tannock, 2005) 

that parallels neuromaturation and development (particularly that of the frontal lobes; 

Macdonald et al., 2006). Increasing variability also parallels concomitant decrements in 

cognitive functioning throughout senescence (Li et al., 2004). This finding suggests that 

intraindividual variability in certain types of response time tasks is indicative of 

compromised neurologic integrity (Li & Lindenberger, 1999), and studies have found 

that intraindividual variability is associated with specific and general neurologic 
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compromise (Burton et al., 2006). Researchers in the aging literature have indexed 

intraindividual variability in response time using a variety of tasks, including reaction 

time measures of varying complexity (Hultsch et al., 2000), episodic recognition tasks 

(MacDonald et al., 2008), and indicators of postural sway (Li et al., 2004). 

Intraindividual variability on all such measures (either from trial-to-trial or across 

occasions) seems to be negatively correlated with cognitive performance on a multitude 

of tasks, especially putative measures of executive functioning (de Frias et al., 2007). 

This is consistent with other evidence revealing that intraindividual variability is most 

pronounced on tasks with significant executive task demands (West et al., 2002). In 

studies examining individuals across time periods of up to three years, when variability is 

high, cognitive performance is correspondingly low (Bielak et al., 2010). In this study, 

the authors interpreted this as “evidence for within-person coupling” of cognitive and 

motor domains; the coupling relationship seems to be stronger for fluid cognitive 

domains such as processing speed, memory, and reasoning (Bielak et al., 2010). Evidence 

from this literature supports the notion that intraindividual variability in response time is 

an ecologically valid indicator of functioning in domains such as problem solving, and 

bears a relationship to this neuropsychological skill above and beyond the mean (Burton 

et al., 2009). In older individuals, intraindividual variability is also a reliable harbinger of 

risk of mortality from all causes (Shipley et al., 2006).  

The incidence of mild cognitive impairment is generally thought to bear a positive 

relationship with advancing age (Panza et al., 2005). Inconsistency in response time 

distinguishes between cognitively impaired, non-demented adults and control subjects, 

and is also predictive of those who will go on to develop mild cognitive impairment over 



16 

 

 

periods of up to five years (Bielak et al., 2010). It should be noted that in this study, mean 

rate of responding was a comparable predictor of mild cognitive impairment. Other large-

sample studies have found similar results (i.e., that variability in responding does not 

uniquely predict cognitive outcomes over and above mean levels of performance; 

Christensen et al., 2005), possibly due to statistical and methodological differences. For 

example, in elderly individuals, measures of consistency may be more predictive of 

diagnostic status than measures of dispersion, and the relationship of variability to 

cognitive impairment may be more robust in older vs. younger individuals (Christensen 

et al., 2005). This finding is still a matter of debate, and other studies have found unique 

contributions of variability vs. mean levels of responding on measures of simple reaction 

time (Dixon et al., 2007). In older individuals (70-102 years), inconsistency on measures 

of perceptual speed precedes and predicts decline in mean levels of performance on the 

same measures, as well as measures of ideational fluency (Lövdén et al., 2007). 

The rate of conversion from mild cognitive impairment to dementia varies across 

studies but has been documented around 5% - 10% in community samples and 10% - 

15% in clinical samples over a one-year period (Christensen et al., 2005). Work within 

this area has further clarified the relationship of response time variability to neurologic 

dysfunction. In a study comparing healthy adults, adults with Parkinson’s disease, and 

adults with Alzheimer’s disease, both clinical groups showed greater variability in 

response time than the control group on all measures across four testing sessions (Burton 

et al., 2006). In this effort, the authors used a variety of different response time tasks 

including simple reaction time, choice reaction time, word recognition reaction time, and 

story recognition reaction time. Their findings lend support to the idea that 
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intraindividual variability is related to general nervous system dysfunction. A dose-

response relationship also emerged such that those who were more impaired (as assessed 

by Mini Mental Status Exam and Intelligence Quotient discrepancy scores) were also 

more inconsistent across all tasks. A specific pattern of variability between clinical 

groups was also apparent, such that those with Alzheimer’s disease were more variable 

than those with Parkinson’s disease (especially on more complex tasks), an effect that 

remained after controlling for group differences in severity of impairment. This lends 

support to the idea that inconsistency is also related to specific patterns of neurologic 

dysfunction.  

Research on intraindividual variability has also deepened our understanding of 

various primary progressive dementing conditions. As mentioned previously, the 

magnitude of variability seems to parallel the degree of frontal involvement in dementia 

subtypes; those affected by a frontal variant of frontotemporal dementia demonstrate 

greater fluctuation over time and greater between subject variability than those with 

Alzheimer’s dementia or healthy controls (Murtha et al., 2002). In this study, frontal 

involvement was not associated with greater variability from trial-to-trial (as opposed to 

session-to-session), although the conclusions drawn from this work must be tempered due 

to the relatively non-executively demanding nature of the tasks these authors used as 

measures of dispersion (i.e., simple and choice reaction time) and the small sample size 

they studied.  

In addition to disease processes such as dementia, intraindividual variability also 

accompanies insult to the central nervous system due to closed head injury (Stuss et al., 

1994). While these authors reported no obvious factor (e.g., severity of injury) associated 
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with the degree of variability, other studies have found dose-response relationships 

between intraindividual variability in reaction time and severity of impairment (as 

measured by the Halstead - Reitan Neuropsychological Battery impairment index; Collins 

& Long, 1996). Recent efforts have clarified these conflicting findings, and trial-to-trial 

variability seems to be specifically associated with damage to the frontal lobes (with the 

exception of ventromedial/orbitofrontal regions), but not general brain damage (Stuss et 

al., 2003). This finding lead Stuss and colleagues (2003) to conclude that, “the frontal 

lobes control intraindividual performance variability.” Mean levels of task performance 

were not significantly correlated with measures of trial-to-trial variability in this study, 

however, the sample studied represents a restricted clinical group and this relationship 

cannot be assumed in other populations. The pattern of variability observed in brain 

injured subjects bears a complex relationship with task characteristics (Stuss et al., 2003), 

and level of recovery (Collins & Long, 1996).  

Intraindividual variability in response time has been extensively investigated in 

schizophrenia, and classic descriptions of this condition emphasize irregularities and 

inconsistencies in performance (Kraepelin, 1919). Investigators in this area have studied 

dispersion in response times primarily using continuous performance tests (Kaiser et al., 

2008) and Go/No-go tasks (Rentrop et al., 2010). In this population, simple measures of 

variation such as the iSD and ICV are increased in magnitude relative to control subjects 

and also bear a relationship to task accuracy, although the incremental validity of such 

measures over that of mean response times is somewhat more equivocal (Kaiser et al., 

2008). More complex metrics of variability derived from ex-Gaussian response time 

distributional analysis (which is discussed extensively in the following sections) are more 
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promising. Distribution parameters have been found to differentiate high functioning 

schizophrenic subjects from normal control with high effect sizes, and this relationship is 

independent of mean levels of performance (Rentrop et al., 2010). In this study, a 

measure of work capability (the Osnabruck Work Capabilities Profile) was also 

positively correlated with increased size of the slow tail of schizophrenic participants’ 

response time distributions, giving more support to the idea that indices of variability 

may be ecologically valid measures.  

Schizophrenia has been associated with pronounced dysfunction of the prefrontal 

cortex (Callicott et al., 2003). There is also evidence that the disorder likely involves 

widespread cortical disconnectivity, not just regional impairment (Andreasen, Paradiso, 

& O’Leary, 1998; Friston & Frith, 1995). In either case, high levels of intraindividual 

variability in schizophrenia have been interpreted as the result of increased prefrontal 

noise due to inefficient neural processing; a conclusion bolstered by both 

electrophysiological and functional imaging data (Winterer & Weinberger, 2004; 

Winterer et al., 2004). This increase in prefrontal noise may represent an “intermediate 

phenotype” between schizophrenics and those who are not symptomatic but have a high 

genetic liability for the disorder (Winterer et al., 2004). More research on this topic is 

required before reaching more than a tentative conclusion, as other studies have not 

documented increased intraindividual variability in the relatives of schizophrenic 

individuals (Birkett et al., 2007). 

Intraindividual variability in response time has been researched in numerous other 

clinical conditions including attention deficit hyperactivity disorder, autism spectrum 

disorders, and general psychiatric disturbance (Bunce et al., 2008; Geurts et al., 2008; 
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Leth-Steensen et al., 2000). All of these clinical groups demonstrate greater response 

time variability than normal controls. Moreover, response-time distributional analyses 

have shown that certain parameters indexing intraindividual variability are highly 

diagnostic of attention deficit hyperactivity disorder (at least in males with this disorder; 

Leth-Steensen et al., 2000). Variability within these clinical conditions has been 

interpreted as a result of impairment in various executive processes such as inhibitory 

control (Geurts et al., 2008), monitoring and updating information, and mental set 

switching (Bunce et al., 2008). 

The Measurement of Intraindividual RT Variability 

Traditionally, researchers have relied on summary statistics to capture the effects 

of experimental manipulations on response time distributions or to quantify such 

distributions in general. The iSD is by far the most popular summary measure of 

variability (Ram & Gerstorf, 2009) and has been used in most of the studies reported 

above. Despite popularity of this statistic, there is a growing body of evidence that it may 

be an inadequate measure. It is well known that increased iSDs on response time tasks 

may simply reflect changes in mean response time: those who have longer response 

latencies also show more variability in performance at both the intraindividual and 

interindividual levels (Hale, Myerson, Smith, & Poon, 1988; Salthouse, 1993). Other 

researchers have not found significant relationships between variability and mean levels 

of performance (Stuss et al., 2003; West et al., 2002), yet the vast majority of studies 

detect a high degree of covariation. Derived from the standard deviation, the iSD is prone 

to the “lawful” relationship between the mean and standard deviation of response time 

distributions (Wagenmakers & Brown, 2007).  
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To deal with the iSD’s association with mean response time latency, researchers 

have turned to several different approaches. One method is to index variability as the 

ICV, which is nothing more than an individual’s iSD divided by their mean response 

time. Accordingly, if an individual’s iSD increases simply as a result of corresponding 

increases in mean latency, the ICV will remain constant. Mathematically, this is a form of 

data transformation that is roughly equivalent to a logarithmic transformation (Murtha et 

al., 2002). Some authors have called for variability researchers to cite both these statistics 

to clarify their results (Kaiser et al., 2008; Stuss et al., 2003) and in some studies, effects 

that are found when indexed by the iSD have been rendered no longer significant in 

analyses using the ICV (e.g., Birkett et al., 2007). 

A somewhat more sophisticated method of statistical control involves using 

regression analyses to partial out the effects of mean response time before computing the 

index of variability (Williams et al., 2005). In addition to removing linear covariates of 

the mean, this approach also allows for the control of other confounds such as practice, 

accuracy, and time of day (Allaire & Marsiske, 2005). This method of statistical control 

has been criticized because it does not control variance in the mean when examining 

relationships with the iSD; rather, it controls the variance in variables that are correlated 

with the scores from which the mean is derived (Salthouse & Berish, 2005). In other 

words, it controls for the association of the mean with other variables but it does not 

control for the relationship between the mean and the iSD directly.  

Furthermore, the use of the ICV and regression-based approaches relies on a 

potentially flawed assumption: that of a linear relationship between an individual’s mean 

reaction time and the index of variability. While some work has supported the notion of a 
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linear relationship between these variables (Wagenmakers & Brown, 2007), other efforts 

have found that this relationship can be violated in empirically obtained samples 

(Schmiedek et al., 2009). In the latter study, Schmiedek and colleagues (2009) used 

variance heterogeneity multilevel models to represent reaction time data, finding that the 

relationship between means and variances itself varies reliably - both across individuals, 

and across age groups. This obviously contradicts the assumption of invariant linearity 

presupposed by the use of the ICV or linear regression based statistical control 

approaches. If the relationship between means and measures of variability is non-linear, it 

cannot be adequately controlled by statistical approaches based on the general linear 

model without significant modifications. 

A second criticism of summary statistics such as the mean, iSD, or ICV 

(regardless of what has been partialed out of the data before the computation of these 

measures) is more fundamental and regards the suitability of these indices for describing 

the shape of a distribution of reaction time data. Anyone who has read an introductory 

statistics textbook is well aware of the fact that certain distributions (e.g., the normal or 

Gaussian distribution) are described completely by the mean and standard deviation 

while others are not. Positively skewed distributions (or any non-symmetrical distribution 

for that matter) are not adequately represented by statistics such as the standard deviation, 

as this measurement does not index the inherent asymmetry of the data (Balota & Yap, 

2011). Substantial evidence exists that response time distributions are nearly universally 

positively skewed and that this positive skew generally increases with task complexity 

(Luce, 1991); these observations have been so consistent across different tasks and 

subjects that some authors have likened them to the status of “laws” of behavior 
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(Wagenmakers & Brown, 2007). Mathematically, distributions with a definite lower 

boundary and an unlimited upper boundary (e.g., response time distributions) are nearly 

always positively skewed.  

One reason that researchers have relied so heavily on the use of the iSD and 

similar statistics despite these problems is that the study of perceptual-motor processes 

(such as those involved in response time tasks) has been largely dominated by 

information theory (Shannon, 1948). According to this viewpoint, both errors and 

variability emanate from a motor command (the signal) that is contaminated by noise 

from the channel through which it is transmitted (Slifkin & Newell, 1998). The amount of 

variability as measured by the standard deviation of the distribution of an observed 

variable (e.g., a response time distribution) is assumed to directly correspond to the 

amount of noise in the underlying behavioral process (Fitts, 1954). A related assumption 

of information theory is that observations that deviate from the mean of a signal-

distribution represent random errors, and that indices of the magnitude of this variability 

directly correspond to the amount of white Gaussian noise in the signal (Slifkin & 

Newell, 1998). This assumption has rarely been questioned, but recent work suggests that 

it may be the exception rather than the rule. Emerging evidence suggests that variability 

may have meaningful patterns that do not simply represent noise, but that the pattern of 

variability is important information in and of itself (Balota & Yap, 2011; Leth-Steensen 

et al., 2000; Rentrop et al., 2010; Slifkin & Newell, 1998). 

The substantial positive skew of response time data suggests that such 

distributions are not adequately represented by a Gaussian function, the iSD, or ICV, and 

by extension, that the noise itself is not white (i.e., “errors” are not completely 
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independent of each other/uncorrelated). These problems have lead to a variety of more 

sophisticated alternative methods for the analysis of response time data. One approach 

involves the use of computationally explicit models that simultaneously estimate 

measures of central tendency and variability, the most popular of which is the diffusion 

model (Ratcliff, 1978). The basic form of this model has been adapted in ways that make 

it more practically useful given the constraints of real-world experimental situations (see 

Wagenmakers, vaan der Maas, & Grasman, 2007), yet many paradigms do not contain 

sufficient data for the adequate application of this methodology. It is also only 

appropriate on dichotomous response time tasks and cannot be used to model more 

complicated task paradigms. 

Another technique involves the fitting of mathematical functions to response time 

distributions in order to more precisely quantify their characteristics without losing 

valuable data (van Zandt, 2000). Among the various distributions that have been utilized, 

the ex-Gaussian fits response time data “surprisingly well” (Ratcliff & Murdock, 1976). 

It adequately describes the entire shape of the data in a way that measures of central 

tendency cannot (Balota & Spieler, 1999). Promising new techniques (i.e., quantile 

maximum likelihood estimation) have recently become available to extract reliable 

distribution parameters from small samples of observations, and this process is especially 

robust and efficient for the ex-Gaussian distribution (Heathcote, Brown, & Mewhort, 

2002). Response time distributional analysis makes it possible to analyze specific task 

manipulations or conditions on standard cognitive paradigms with a level of precision 

that was not possible a decade ago. Recent efforts have begun to link ex-Gaussian 

parameters with neuropsychological constructs germane to the present study (e.g., 
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working memory and abstract reasoning), aiding the interpretation of these parameters in 

various applied situations (Schmiedek, Oberauer, Willhelm, Süß, & Wittman, 2007; Tse, 

Balota, Yap, Duchek, & McCabe, 2010). This methodology has been used to shed light 

on a variety of neuropsychological and cognitive phenomena, establishing its clinical as 

well as theoretical significance (Balota et al., 2008; Geurts et al., 2008; Heathcote et al., 

1991; Leth-Steensen et al., 2000; Rentrop et al., 2010). 

At its most basic level, the ex-Gaussian function represents the convolution of a 

normal (Gaussian) and an exponential distribution. This function is characterized by two 

parameters Mu and Sigma (μ and σ, respectively) corresponding to the mean and 

standard deviation of the normal part of the distribution and Tau (τ), which reflects the 

mean and standard deviation of the exponential part. The mean of an empirically obtained 

distribution is constrained to be the sum of μ and  τ , while the variance is equal to σ
2
 + 

τ
2
. As the third moment of the distribution, the skewness is represented by 2τ

3
 , although 

τ is a more reliable measure of skewness than is the third central moment of the 

distribution (Heathcote, Brown, & Cousineau, 2004). It is this parameter that has been 

used effectively to distinguish between individuals with attention deficit hyperactivity 

disorder and control subjects with impressive effect sizes (Leth-Steensen et al., 2000), 

clarify the mechanisms underlying Stroop test performance (Heathcote et al., 1991), and 

differentiate between schizophrenics and control subjects (Rentrop et al., 2010). As 

previously mentioned, the Tau parameter was also significantly negatively correlated 

with a measure of work performance in the latter study, giving preliminary support for 

the idea that this component of the ex-Gaussian distribution may be an ecologically valid 

measure of functioning. The interpretation of these parameters is not entirely 
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straightforward, yet there is widespread consensus on the appropriateness of this 

statistical technique for characterizing response time distributions (Matzke & 

Wagenmakers, 2009).   

Schmiedek et al. (2007) contributed greatly to the literature describing the 

interpretation of ex-Gaussian parameters. Using structural equation modeling, they were 

able to show that a latent Tau parameter (defined by reaction time tasks of varying 

complexity) was a strong predictor of key executive abilities such as working memory 

and reasoning. These authors also showed that this parameter is directly related to the 

drift rate parameter of Ratcliff and Murdock’s (1976) diffusion model, which symbolizes 

the efficiency of the information accumulation process and individual differences in 

processing efficiency (Schmiedek et al., 2007). This description is highly consistent with 

Li and colleagues (2004) definition of intraindividual performance variability as an 

indicator of “processing robustness.” Their results, which were obtained in a sample of 

normal controls, have been found to generalize to clinical populations, including healthy 

older adults and those with mild dementia of the Alzheimer’s type (Tse, Balota, Yap, 

Duchek, & McCabe, 2010).   

Descriptive plots are often employed in conjunction with the parametric 

approaches described above. These graphical analyses represent an important 

complement to distributional analyses, as they directly display the changes in response 

time distributions that are being modeled. A distinct advantage to these methods is that 

they make no underlying assumptions about the theoretical distribution representing the 

data or the cognitive processes from which data are derived; they are purely descriptive. 

The results of these graphical analyses should confirm the results of distributional 
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analyses. Relevant techniques include delta, hazard, quantile, and Vincentile plots (Balota 

& Yap, 2011). Quantile plots are considered below in some detail, given that they are 

utilized in the present study. 

Quantile plots visually depict differences between the response time distributions 

of experimental groups; for example, old vs. young participants, cognitively impaired 

individuals vs. normal controls, or individuals with high vs. low working memory. These 

plots may be understood to represent the average response time distribution of 

participants in a given group (i.e., a “super subject;” Tse et al., 2010). To form quantile 

plots, the RTs of a given participant are first rank ordered from lowest to highest. 

Quantiles (i.e., points that divide an individual’s response time distribution into a pre-

specified number of bins each containing an equal proportion of observations) are then 

calculated for each participant, and these points are averaged across subjects within a 

particular condition or group (Heathcote, 2000). For example, if 5 quantiles are desired, 

then one calculates points below which 10%, 30%, 50%, 70%, and 90% of an individuals 

observations fall. The intervals between contiguous quantiles each contain 1/q 

observations (where q is the number of quantiles). In the example above, each interval 

would contain 20% of a given individual’s observed response times (i.e., 1/q = 0.2). The 

number of quantiles should represent a balance between maximizing the resolution of 

analyses (i.e., a greater number of quantiles) and reliability in the presence of outlying 

observations (i.e., a fewer number of quantiles). As a heuristic, researchers often use 10 

quantiles (e.g., Balota et al., 2008; Tse et al., 2010).  

Figures 2 - 4 (adapted from Balota & Yap, 2011) represent idealized effects of 

changes in specific parameters of the ex-Gaussian distribution as they appear in quantile 
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plots. In Figure 2, all parameters are held constant with the exception of a 100msec 

increase in Mu, which results in separation of the quantile bands. In terms of a probability 

density function, this effect would result in simple shifting of the entire distribution 

without any changes in the shape of the distribution. 

 

Figure 2. Effects of 100msec change in Mu (Adapted from Balota & Yap, 2011, p. 

163). 

Figure 3 represents the effect of a 100msec change in Tau with all other 

parameters held constant. Notice the increasing effect of changes in Tau on the slow tail 

of the distribution. In terms of a probability density function, an isolated effect in Tau 

would result in elongation of the right side and right tale of the distribution (similar to 

increased skewing).  
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Figure 3. Effects of 100msec change in Tau (adapted from Balota & Yap, 2011, p. 163). 

Finally, Figure 4 represents the idealized effect of a 100msec change in both Mu  

and Tau, resulting in separation of quantile bands in addition to increasing slope at more 

extreme observations for the line with the higher Tau parameter. In terms of a probability 

density function, changes in both Mu and Tau would result in distributional shifting as 

well as a change in the right side (i.e., exponential component) of the distribution.  

 

Figure 4. Effects of 100msec change in both Mu and Tau (Adapted from Balota & Yap, 

2011, p. 163). 
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Estimation of Distribution Parameters 

Until recently, continuous maximum likelihood (CML) estimation was the 

method of choice for parameter estimation in response time distributional research (van 

Zandt, 2000). This procedure requires approximately 100 observed response times in 

order to reliably extract distribution parameters. Heathcote and collages (2002) recently 

proposed quantile maximum likelihood (QML) as an alternative that requires far fewer 

observations for reliable parameter extraction. QML is a unique estimation method that 

extracts parameters on the basis of quantiles rather than raw data. To clarify, the 

likelihood of a sample is defined as the joint probability of the sample of observations 

according to the theoretical distribution model employed (Heathcote et al., 2004). The 

likelihood differs depending on the assumptions underlying the estimation method. CML 

estimation for the ex-Gaussian distribution assumes that the data are independent, 

identically distributed ex-Gaussian observations, and the likelihood for the data are 

described by the following equation (adapted from Brown & Heathcote, 2003): 

 

QML nests the model assumed by CML, yet makes weaker assumptions about the 

model representing the data, allowing it to function in circumstances that would be 

inappropriate for CML estimation. As described by Brown & Heathcote (2003):  

QML estimation begins with the specification of a fixed set of probabilities, 

, where , and , such that  where 

the set  are quantiles. (p. 486). 

  

{pi : i = 0...m}

  

p1 = 0,pi < pi+1

  

pm =1

  

p(t < qi) = pi

  

{qi : i = 0...m}
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This method leads to the likelihood function below (adapted from Brown & Heathcote, 

2003): 

 

While more computationally intensive, the advantage to such an approach is 

increased precision and accuracy, and parameters estimated using this method have been 

shown to have smaller bias and variance than those estimated using CML (Cousineau, 

Brown, & Heathcote, 2004; Heathcote et al., 2002). Using QML also enables the 

researcher to obtain reliable parameter estimates from data sets as small as 40 

observations, a serious advantage given the limitations encountered when trying to fit 

empirically obtained response time data (Brown & Heathcote, 2003). In contrast, using 

continuous maximum likelihood estimation calls for a minimum of 100 observations for a 

reliable fit (but see Geurts et al., 2008; Leth-Steensen et al., 2000 for possible exceptions 

to this heuristic). This fitting technique is implemented in Brown & Heathcote’s (2003) 

Quantile Maximum Probability Estimator (QMPE v2.18) software. QMPE produces 

estimates of Mu, Sigma, and Tau, as well as estimates of the standard errors of these 

three parameters, log-likelihood values, and parameter intercorrelations. It also 

automatically tests model fit by calculating expected values for the quantiles and 

comparing them with those observed in the data. 

The Executive Functions 

There is little consensus regarding the term “executive function.” As with the 

concept of intelligence, there is evidence that the executive functions are characterized by 
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both unity and diversity (Miyake et al., 2000). Early theories of executive functioning 

implicated the existence of a “central executive” that coordinated a series of component 

processes (Baddeley, 1986). Cytological architectonic studies at the beginning of the 20
th

 

century (e.g., Brodmann, 1909) paved the way for what is now a voluminous and 

contentious literature that suggests a significant amount of functional specialization 

within the prefrontal cortex and it’s associated networks. The current evidence supports 

an understanding of the executive functions as “a collection of anatomically and 

functionally independent but interrelated attentional control processes” (Stuss & 

Alexander, 2007, p. 901). Theories abound and researchers have advanced numerous 

models based on neuropsychological and functional neuroanatomical properties 

(Goldman-Rakic, 1995; Petrides, 1995; Miyake et al., 2000; Stuss & Alexander, 2007; 

Tekin & Cummings, 2002). The following review presents several related theories of 

frontal lobe functioning that reflect contemporary neuropsychological, cytoarchitectonic, 

electrophysiological, and functional neuroimaging work. 

At a very general level, the executive functions may be understood as “higher-

level cognitive functions involved in the control and regulation of lower cognitive 

operations” (Stuss & Levine, 2002, p. 416). Skills associated with the ventral prefrontal 

cortex (VPFC) may be differentiated functionally and anatomically from those subserved 

by the dorsolateral prefrontal cortex (DLPFC), a distinction supported by the 

evolutionary theory of cortical architectonics (Pandya & Yeterian, 1996). The DLPFC is 

characterized by the archicortical trend, which originates in the hippocampus and is 

involved in spatial and conceptual reasoning processes. By contrast, the VPFC is part of 

the paleocortical trend, which is extensively interconnected with limbic nuclei involved 
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in affective processing and emerges from the caudal orbitofrontal cortex (Stuss & Levine, 

2002). The executive functions explicitly measured by clinical neuropsychologists are 

almost exclusively those that are subserved by the dorsolateral prefrontal cortex and the 

associated structures of the archicortical trend.  

 There is evidence for a significant amount of functional specificity within the 

lateral cortex on the basis of functional, cytoarchitectonic, and anatomic distinctions 

(Owen, 1997). The ventrolateral prefrontal cortex (VLPFC; primarily the inferior frontal 

gyrus, Brodmann’s areas 47, 44, 45) and the DLPFC (primarily the middle frontal gyrus, 

areas 9 and 46) in particular have been the subject of significant research (D’Esposito, 

Postle, & Rypma, 2000). In the domain of working memory, this has lead to several 

models of functional specialization that divide the cortex similarly yet differ with respect 

to the properties attributed to each region. Goldman-Rakic (1995) concluded that the 

DLPFC differs from the VLPFC with respect to the type (i.e., modality) of information 

that is being processed. According to this viewpoint, the DLPFC is responsible for 

working memory as it relates to spatial information and the VLPFC applies working 

memory functions to non-spatial information. While considerably more sophisticated, 

this theory mirrors aspects of classic models (e.g., Baddeley, 1986) that are no longer in 

favor. 

More contemporary efforts have continued to support the notion that these regions 

are distinct albeit not with respect to the type of information they process. For Petrides 

(1995), the ventrolateral and dorsolateral areas of the prefrontal cortex are differentiable 

on a process specific basis. Information is initially received from posterior association 

areas by the VLPFC, which also performs organizing operations on information as it is 
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held in working memory. The VLPFC thus represent a first stage of working memory 

that permits the active organization of responses on the basis of consciously retrieved 

information from posterior storage systems. The DLPFC is recruited during a second 

stage of working memory that involves the active manipulation and monitoring of that 

information (Petrides, 1995). In other words, first stage functions bring information 

“online” within the VLPFC and second stage functions work with that information in the 

DLPFC. Contemporary neuroimaging data has largely supported this process-dissociable 

theory of executive control within the human prefrontal cortex (D’Esposito et al., 2000; 

Owen, 2000).  

Petrides’ (1995) hierarchical model parallels more than a century of clinical 

wisdom, as practicing neuropsychologists frequently conceptualize executive functions 

existing along a gradient of complexity from simple (e.g., retrieval, sustained attention, 

simple performance monitoring) to more complex (e.g., abstract reasoning, complex 

strategy generation, mental manipulation; A. Byrd, personal communication). This 

hierarchical conceptualization is also reflected in the construction of modern test batteries 

designed to evaluate the executive functions, which introduce more complex task 

demands in a staged fashion in order to allow for dissociation of specific 

neuropsychological processes (e.g., Delis, Kaplan, Kramer, 2001).   

 Building on the dual stage model, Christoff & Gabrielli (2000) have advocated 

the inclusion of a third stage of processing subserved by the frontopolar cortex (roughly 

corresponding to Brodmann’s area 10) and a complementary rostro-caudal aspect of 

prefrontal cortical organization. The frontopolar cortex is differentially recruited on the 

basis of whether a particular cognitive task requires internally generated information or 
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externally generated information. When information exists (or has recently existed) 

externally, the DLPFC may be sufficient to evaluate and manipulate that information. By 

contrast, the frontopolar cortex is activated accompanying the addition of increased 

demands requiring the evaluation and manipulation of internally generated information. 

This model was derived from current neuroimaging literature that describes the 

performance of subjects completing episodic memory and abstract reasoning tasks.  

These cognitive models share substantial overlap with conceptual frameworks 

used by practicing clinical neuropsychologists. A neuropsychological evaluation of 

“frontal lobe” functions typically considers four discrete areas: frontal lobe language 

functions, memory control functions, working memory functions, and anterior attention 

functions (Stuss & Levine, 2002), among others (e.g., abstract reasoning, perceptual 

synthesis/organization, planning)  

Neuropsychological assessment of frontal language functions involves an 

examination of activation vs. formulation (Stuss & Levine, 2002). Formulation may be 

evaluated qualitatively during the clinical interview, as evidenced by the patient’s ability 

to succinctly, pertinently, and relevantly respond to examiner inquiries. The inclusion of 

extraneous details, circumstantiality, and simplification of sentence forms suggest the 

presence of impairment. Requiring the patient to fluently generate a list of words in 

response to a semantic category (e.g., animals, actions) or a particular letter of the 

alphabet serves as a measure of activation (e.g., FAS; Strauss, Sherman, & Spreen, 2006). 

You indicated this is wrong, how should I rewrite it? I’m not sure which part is wrong. I 

typically think of semantic fluency as retrieval/lexical access and phonemic fluency as 
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ability to generate a retrieval strategy. Stuss and Levine (2003) list them as measures of 

“activation.” 

Executive control of memory involves the strategic coordination, elaboration, and 

interpretation of associations stored by medial-temporal/hippocampal regions (Stuss & 

Levine, 2002). Semantic clustering of words within associative learning paradigms (as 

observed in the California Verbal Learning Test; Delis, Kramer, Kaplan, & Ober, 2000) 

and placement of information in temporal and spatial contexts are of particular clinical 

importance (Wheeler, Stuss, Tulving, 1997). Retrieval of information from semantic 

networks and the application of retrieval strategies may also be assessed via verbal 

fluency (particularly phonemic fluency; Baldo, Schwartz, Wilkins, & Dronkers, 2006).  

From a neuropsychological perspective, working memory involves holding 

information in abeyance in order to mentally manipulate it. This skill is measured on 

common batteries of full scale intellectual functioning through tasks such as repeating 

digits backward, resequencing random digits in ascending order, and completing mental 

arithmetic problems (Wechsler, 2002). Popular paradigms within the variability literature 

include reading span, computation span, and rotation span (e.g., Schmiedek et al., 2007; 

Tse et al., 2010).  

Standard neuropsychological assessment of anterior attention functions involves 

evaluation of attentional switching, selective attention, and sustained attention (Stuss & 

Levine, 2002). Prototypical tasks used to measure attentional switching include the 

Wisconsin Card Sorting Task (WCST) and Trail Making Test Part B (TMT-B). This 

cognitive ability is more commonly referred to as “shifting” within the research literature 

(Miyake et al., 2000). Sustained attention, on the other hand, is assessed through the use 
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of continuous performance tests (e.g., Conners’ Continuous Performance Test; CPT) or 

other bland tasks requiring “top down” modulation of basic attentional processes (Lezak, 

2004). Measures of selective attention such as the Stroop test require the ability to 

prioritize particular stimulus characteristics (i.e., color naming) while suppressing other 

competing information (i.e., word reading) selectively.   

Tasks measuring the neuropsychological domains of working memory and 

anterior attention functions can be broadly construed as tests of cognitive control that 

depend upon the partially dissociable networks of the DLPFC and VLPFC (Miller & 

Cohen, 2001; Stuss & Levine, 2002; Stuss, 2011). These tasks are particularly relevant to 

the study of variability, given that neuroimaging, latent variable, and clinical research 

suggest that intraindividual response time variability is a sensitive marker of the 

efficiency of executive control processes (Bellgrove et al., 2004; Bunce et al., 2007; Tse 

et al., 2010). Neuropsychological measures of cognitive control are thought to draw on 

multiple processes including task switching, response inhibition, error detection, response 

conflict, and working memory (Chase, Clark, Sahakian, Bullmore, & Robbins, 2008).  

The Stroop test, Wisconsin Card Sorting Test, Trail Making Test Test (Part B), 

and COWAT represent prototypical cognitive control tasks and have been used in lesion 

mapping studies to further clarify the brain regions underlying this executive ability 

(Gläscher et al., 2012). Data from this revolutionary work have largely supported Petrides 

(1995) dual stage model and lends further evidence to the hierarchical rostro-caudal 

organization of the prefrontal cortex hypothesized by Christoff & Gabrielli (2000).  

Gläscher’s (2012) work represents the first study of its size causally relating 

neuropsychological test performance to specific prefrontal cortical networks that 
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subserve cognitive control. These neuropsychological measures are thus well positioned 

for investigations of intraindividual response time variability as it relates to this cognitive 

construct.  

Executive Functioning and Intraindividual Variability 

A variety of neural substrates thought to subserve the executive functions have 

been implicated in the regulation of response-time consistency. These include the 

robustness of neuromodulatory control (Li & Lindenberger, 1999; Li, Lindenberger, & 

Sikström, 2001), overall white matter volume (Walhovd & Fjell, 2007), and fluctuations 

in the functional connectivity of various brain regions (Kelly, Uddin, Biswal, Castellanos, 

& Milham, 2008; Prado, Carp, & Weissman, 2011). At the behavioral level, significant 

evidence also suggests that executive dysfunction may give rise to increased performance 

variability. Numerous authors have invoked this supervisory cognitive skill as a 

framework for the interpretation of their findings (Bunce et al., 2008; Geurts et al., 2008; 

Stuss et al., 2003).  

Considering the multifactorial nature of the executive functions, increased 

intraindividual variability could be the result of impairment or inefficiency in any one of 

a number of component processes. Attributions of intraindividual variability to specific 

executive functions include “lapses of intention” (i.e., prospective memory), fluctuations 

in executive control (West et al., 2002), increased prefrontal broadband noise due to 

inefficient neural processing (Winterer et al., 2004), and inadequate sustained attention 

caused by a failure of top-down executive processes (Kaiser et al., 2008). All of these 

descriptions are consistent with the interpretation that response time variability may be 

specifically related to cognitive control.  
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Evidence from structural and functional brain imaging techniques has given 

credence to this hypothesis. In one study, frontal white matter hyperintensities in older 

adults were related to increased intraindividual variability on reaction time tasks, but not 

on tests of psychomotor speed, memory, and global cognition (Bunce et al., 2007). This 

suggests that variability in response time is a discrete phenomenon that does not simply 

reflect general cognitive dysfunction or motor control problems (at least in some 

populations). In this study, Bunce and colleagues (2007) also found that white matter 

hyperintensities in non-frontal brain regions were not associated with increased 

intraindividual variability, strengthening the assumption that consistency may specifically 

map onto prefrontal areas of the cortex.   

The first study of intraindividual variability and the functional neuroanatomy of 

executive control has helped to elucidate this association (Bellgrove et al., 2004). In this 

work, increased variability in responding on go trials of a Go/No-go task was associated 

with increased bilateral frontal brain activation, lower inhibitory success, and slower 

responding. These results are consistent with the idea that individuals who demonstrate 

greater variability have an increased need for executive control (resulting in greater 

activation of frontal/prefrontal circuitry) and that this translates to poor performance on 

other measures of this ability. The authors concluded that intraindividual variability could 

serve as a sensitive index of the efficiency of executive control processes (Bellgrove et 

al., 2004).  

Genetics research further implicates the prefrontal cortex as a key determinant of 

response time variability. The catechol-O methyltransferase gene is responsible for 

dopamine catabolism in the prefrontal cortex through conversion to 3-methoxytyramine 
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and exists in two broad variants in human beings (Mattay et al., 2003). Val carriers of the 

gene have lower levels of this important neurotransmitter in prefrontal areas than Met 

carriers; they also show deficient performance on measures of various executive abilities 

(Goldberg et al., 2003). Carriers of the Val allele of the catechol-O-methyltransferase 

gene exhibit greater intraindividual variability than Met carriers on continuous 

performance tasks (Stefanis et al., 2005). They also demonstrate inefficient patterns of 

prefrontal neural activation on working memory measures, and have an increased 

incidence of conditions associated with heightened performance variability (e.g., 

schizophrenia, Egan et al., 2001; and attention deficit hyperactivity disorder, Eisenberg et 

al., 1999). 

Neuropsychological efforts also suggest that intraindividual variability may be 

related to executive functioning and cognitive control. Greater variability is associated 

with poorer ideational fluency (Lövdén et al., 2007), weaker reasoning and retrieval 

(Bielak et al., 2010), and is negatively correlated with various measures of fluid 

intelligence (Alderton & Larson, 2002; Li et al., 2001; Ram et al., 2005). Fluid 

intelligence is a broad cognitive ability, yet this construct has been linked to behavioral 

measures of executive functioning and frontal lobe volume (Schretlen et al., 2000). The 

fact that variability is increased on moderately to highly executively demanding tasks is 

also consistent with the hypothesis that executive integrity is necessary for performance 

consistency (Bielak et al., 2010; West et al., 2002).  

Several conclusions can be drawn on the basis of the present review. First, the 

relationship between the executive functions and performance variability is fairly robust. 

Second, there is a convergence of evidence from structural and functional neuroimaging, 
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neuropathological, and neuropsychological efforts supporting the presence of this 

relationship. Third, work suggests that performance consistency and executive ability 

may both be the products of genetic and environmental factors. The literature thus begs 

the question: do measures of intraindividual variability deserve a place in the test 

batteries of practicing neuropsychologists? 

The Wisconsin Card Sorting Test (WCST) 

The WCST may be ideally suited as a measure of response time variability. This 

task was originally construed as a “simple” and “objective” measure of problem solving 

and decision making in 1948 (Berg, 1948). Since that time, it has been variably 

conceptualized as a measure of attentional switching (Everett, Lavoie, Gagnon, & 

Gosselin, 2001), working memory (Goldman-Rakic, 1994), and sustained attention 

(Smith et al., 1998). Regardless of these various interpretations, the WCST has been a 

dominant paradigm for the measurement of executive functioning since its inception and 

over 75% of neuropsychologists report using it as a standard part of their test battery 

(Butler, Retzlaff, & Vanderploeg, 1991). The WCST has also been a topic of 

considerable research with over 600 papers published on this instrument, 80% of them 

within the last 16 years (Greve, Stickle, Love, Bianchini, & Stanford, 2005).  

Data from numerous neuroimaging studies support the notion that the WCST taps 

working memory function in dorsolateral and frontopolar areas of the prefrontal cortex 

(Berman et al., 1995). The magnitude of activation of the dorsolateral prefrontal cortex is 

also positively related to levels of task performance on the WCST (Ragland et al., 1997). 

Stuss and colleagues (2003) found that lesions to this area were particularly important in 

effecting intraindividual variability on a series of response time tasks. In non-brain 
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injured individuals however, to effect significant variability in response time researchers 

have used more executively demanding tasks (West, 1999). A recent meta-analysis of 

neuroimaging studies on the WCST supported the notion that this instrument is an 

attentionally demanding executive task (Buchsbaum, Greer, Chang, & Berman, 2005), 

even after giving participants training practice (Berman et al., 1995).  

Factor analytic studies have further characterized the latent cognitive constructs 

measured by the WCST. Most have found that a three-factor solution best describes the 

test and that the only statistically sound factor is the first one (Greve et al., 2005). This 

factor has been observed in studies with frontal patients, schizophrenic patients, and 

normal controls. It has been variably labeled “perseveration,” “abstract thinking ability,” 

“concept formation,” “undifferentiated executive function,” and “flexibility” (Somsen, 

Van der Molen, Richard Jennings, & van Beek, 2000).  

Attempts to further specify the multitude of cognitive processes involved in this 

complicated task have resulted in examinations of various stages of task performance. A 

simple model that has been proposed implicates set-switching and set-maintenance as key 

components (Kieffaber et al., 2006). These two different aspects of executive functioning 

generally reflect rule-search and rule-application, two distinct processes that grossly map 

onto specific task demands (Somsen et al., 2000). After correct feedback and rule 

attainment, subjects must maintain their mental set and continue to respond correctly 

until an unannounced change in the sorting rule. Following negative feedback, subjects 

must disrupt their ongoing pattern of responding and begin searching for a new rule until 

they have determined the next sorting principle.  
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The distinction between rule-search and rule-application is an important one. As 

elaborated by Li and colleagues (2004) in their taxonomy of intraindividual dynamics, 

certain types of variability can be adaptive. Plasticity (functional diversity to attain large 

gains in performance following task exposure) and diversity (the set of exploratory 

behaviors and strategies used for performing a complex cognitive task) are two examples. 

Such behaviors are typically observed on complex tasks amenable to strategy use, like the 

WCST. On the other hand, fluctuation (characterized by instability of optimal 

performance) around an asymptote of optimal functioning represents a maladaptive type 

of variability. During rule application functioning is already optimal because the sorting 

principle has been attained, and variability during this phase of the task would represent 

precisely this sort of fluctuation or lack of processing robustness.   

Limitations of our Current Knowledge 

The previous review reveals several limitations of the current literature that are 

particularly germane to neuropsychologists who wish to incorporate intraindividual 

variability into their clinical practice. First, most of the studies of intraindividual 

variability reported above have not extensively examined the relationship of this 

construct with commonly used measures of executive functioning. The majority of efforts 

have focused on predicting outcomes using intraindividual variability data (e.g., 

Christensen et al., 2005; Holtzer et al., 2008; Lövden et al., 2007; MacDonald et al., 

2008) or using intraindividual variability as a basis for between group comparisons (e.g., 

Burton et al., 2006; Geurts et al., 2008; Bunce et al., 2008). In those studies that do assess 

higher-order cognitive constructs directly relevant to the practice of clinical 

neuropsychology (e.g., de Frias et al., 2007; Schmiedek et al., 2007; Tse et al., 2010), the 
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batteries employed are frequently esoteric to American neuropsychologists or are 

insufficiently comprehensive. Failure to include clinical measures of abstract reasoning (a 

higher-order frontopolar aspect of executive functioning) is particularly common. For 

example, de Frias and colleagues (2007) operationalized executive functioning using only 

the Stroop task, Trail Making Test (Part B), and Digit Ordering Test. As higher-order 

executive skills (e.g., abstract reasoning may be functionally distinct from more basic 

executive abilities), this is a glaring omission. Moreover, no study has examined the 

relationship of intraindividual variability in response time to the WCST. 

Second, studies that do employ commonly used neuropsychological tasks are 

often conducted in restricted clinical samples that do not reflect the diversity encountered 

in routine clinical practice. Different patterns of intraindividual variability exist within 

different populations; it is thus uncertain whether associations found in one clinical group 

generalize to others. This is an important limitation given that the appropriate application 

of psychometric methods requires normative data to generalize. Individuals presenting 

for neuropsychological evaluations in applied settings often demonstrate multiple 

comorbid conditions, psychiatric impairment, and are unlikely to be reflected in the well-

screened samples employed in most published investigations. 

Third, most studies index variability using simple or complex dichotomous 

response time tasks as criterion variables. Other common paradigms include episodic 

memory tasks (Hultsch et al., 2000), greater than two choice reaction time tasks (e.g., 

Schmiedek et al., 2007; Stuss et al., 2003), and Simon tasks (e.g, Tse et al., 2010). These 

measures are designed explicitly for research and are not commonly employed in routine 
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batteries used for clinical purposes. Thus, increased intraindividual variability on these 

tasks is of uncertain clinical application.  

Fourth, the majority of neuropsychological research on intraindividual variability 

and executive functioning has employed relatively crude outcome measures such as the 

iSD, ICV, or other summary statistics that paint an incomplete picture of the data. As 

reviewed in detail above, the use of these statistics may be misleading. Results from 

studies employing these measures are of dubious validity and may simply reflect 

differences in mean response latency. It is not possible to determine the precise location 

within the response time distribution from which significant effects emanate using 

summary statistics, and thus fine-grained analyses are not possible. Finally, these studies  

rarely report graphical analyses that would allow for more careful inspection of 

significant results.  

A Rationale For the Present Study 

On the basis of the present review, it can be concluded that intraindividual 

response time variability is likely to be a sensitive and novel indicator of the integrity of 

the prefrontal cortex and the efficiency of cognitive control processes. Furthermore, the 

relationship between intraindividual variability and the executive functions appears to be 

robust and holds across studies of traumatic brain injury (Stuss et al., 2003), dementia 

(Murtha et al., 2002), aging (Lövdén et al., 2007), and psychiatric disturbance (Bunce et 

al., 2008). In the few studies examining intraindividual response time variability in 

normal populations, increases are also associated with poorer performance on measures 

of fluid intelligence (Nesselroade & Salthouse, 2004) and executive constructs such as 

working memory and reasoning (Schmiedek et al., 2007; Tse et al., 2010). This evidence 



46 

 

 

is consistent across neuroimaging (Bellgrove et al., 2004), genetic (Bellgrove et al., 2005; 

Stephanis et al., 2005) and neuropsychological studies (Bielak et al., 2010, Lövden et al., 

2007).  

In the setting of these findings, an investigation using clinical methods to explore 

intraindividual variability as it relates to executive functioning may inform the practice of 

clinical neuropsychology. The primary aim of this study is to evaluate the relationship 

between executive functioning (specifically, cognitive control) and intraindividual 

variability in response time. In doing so, this research makes use of Petrides’ (1995) dual 

stage model of working memory and Christoff & Gabrielli’s (2000) hierarchical rostro-

caudal model of prefrontal cortex functioning as explanatory frameworks. Several 

research hypotheses are advanced in the service of this goal.  

First, it is hypothesized that greater levels of cognitive control will result in lower 

levels of intraindividual variability. Cognitive control has been previously 

operationalized in neuropsychological studies through the use of the WCST 

(perseverative errors), Stroop (color-word trial), TMT-B (seconds to completion), and 

COWAT (total words generated to the letters FAS; Gläscher et al., 2012). Lower levels 

of performance on this battery of tests should be associated with greater levels of 

intraindividual variability (as parameterized by Tau). It is also likely that individuals who 

take with longer mean response latencies (as parameterized by Mu) will also exhibit 

poorer test performance.  

Second, greater levels of simple sustained attention will be associated with lower 

levels of intraindividual variability. If intraindividual variability in response time is 

related to higher-order aspects of executive functioning, according to Petrides’ (1995) 
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dual stage model, it should also be related to first stage processes. First stage processing 

involves comparatively simpler cognitive skills such as “comparisons between, or 

judgments about the occurrence or non-occurrence of remembered stimuli” (Owen, 2000, 

p. 34). This characterization describes the CPT, and this hypothesis will be investigated 

through examining the relationship of the ex-Gaussian parameters with various CPT 

variables thought to reflect first stage attentional processes. The Tau parameter (and 

perhaps Mu) should increase with lower levels of performance on the CPT. 

Third, it is important to test the differential contributions of first stage vs. second 

stage functions to the prediction of intraindividual variability. Contemporary theories of 

frontal lobe functioning suggest that this region of the brain may be understood as an 

interconnected network of cytoarchitectonic regions that subserve partially differentiable 

cognitive functions (Christoff & Gabrielli, 2000; Petrides, 1995). From this perspective, 

basic attentional processes (i.e., first stage processes) such as maintaining an internal goal 

state and holding information in working memory are required in order to perform more 

complex operations such as mentally manipulating that information, monitoring, or 

shifting between different task sets (i.e., second stage processes). Hypothesis three tests 

whether individual differences in basic first stage attentional processes are sufficient to 

account for any observed relationships between intraindividual variability and cognitive 

control. Specifically, it is hypothesized that the relationship between cognitive control 

and Tau will be partially mediated by basic attentional functions. 

The fourth and final hypothesis is derived from evidence that intraindividual 

variability is related to abstract reasoning (Schmiedek et al., 2007); a putative higher-

order frontopolar executive function associated with highly abstract activities (Christoff 
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& Gabrielli, 2000). Specifically, it is hypothesized that intraindividual variability in 

response time will be associated with abstract non-verbal reasoning as operationalized by 

the number of categories completed on the WCST. To test this hypothesis, a series of 

regression equations will be used to evaluate the relationship between categories 

completed on the WCST and the three ex-Gaussian parameters. Tau (and perhaps Mu) 

should be positively associated with the number of card sort categories completed. A 

series of task specific analyses follow these hypotheses in order to clarify study results 

and determine the plausibility of alternative explanations.  

This investigation seeks to address several of the limitations of the literature that 

are reviewed above. With respect to the first limitation, this study employs a 

comprehensive battery of executive function tasks that are used by neuropsychologists in 

routine clinical practice. Indices of intraindividual variability in response time will be 

compared to cognitive control tasks including TMT-B, COWAT, the Stroop, and indices 

from the WCST. The results of a large-scale lesion mapping study (Gläscher et al., 2012) 

provide causal evidence of the brain regions that subserve these cognitive tests, allowing 

for relatively confident interpretation of the results within a neuroanatomical framework. 

This work is also informed by several decades of neuroimaging and traditional lesion 

studies that further support the attribution of specific task demands to functional areas of 

the prefrontal cortex.  

The design of the study allows direct tests of the hypothesis that first stage 

processes may mediate the relationship between cognitive control, abstract reasoning, and 

intraindividual variability. All of the cognitive control measures can be broadly construed 

as “second stage” tasks within dominant models of working memory and prefrontal 
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cortex function (D’Esposito et al, 2000; Petrides, 1995; Owen, 2000). Including the CPT 

incorporates simpler “first stage” indices that permit a hierarchical mediation analysis of 

intraindividual variability. Variables from the WCST that measure abstract reasoning 

(i.e., Categories) reflect the “third stage” postulated by Christoff & Gabrielli (2000), 

permitting tentative conclusions about the relationship of intraindividual variability to the 

rostro-caudal organization of the prefrontal cortex. These measures are of known clinical 

utility, have been extensively researched, and their interpretation is relatively clear, which 

make the findings of this study highly relevant to the practice of clinical 

neuropsychology.  

Regarding the second limitation of the literature, the participants of this study are 

drawn from the general population of outpatients at a major northeastern hospital. This 

sample represents intraindividual variability as it exists clinically. The exclusion criteria 

are minimal in order to best capture variability phenomenon as they occur in routine 

practice. If intraindividual variability does bear a meaningful relationship to various 

executive functions, this relationship can be confidently generalized across a broad range 

of different syndromes and comorbidities on the basis of this study.  

With respect to the third limitation of the literature, the present study indexes 

variability using the Wisconsin Card Sorting Test, the most commonly employed 

measure of executive functioning in the neuropsychological armamentarium (Stuss & 

Levine, 2002). This task is well suited as a variability measure given that inconsistency is 

pronounced on executively challenging tasks in most populations (MacDonald et al., 

2009; West, 1999, West et al., 2002). There is also evidence that the performance of this 

task activates prefrontal circuitry; specifically, the frontopolar and DLPFC (Berman et 
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al., 1995; Christoff & Gabrielli, 2000; Gläscher et al., 2012). Performance consistency 

depends upon intact dorsolateral prefrontal cortical regions (Bunce et al., 2008; Bellgrove 

et al., 2004; Stuss, 2003), providing preliminary evidence that the WCST may serve as an 

ideal variability model with important experimental and clinical implications.  

In previous efforts, there has been concern about the extent to which response 

time variability reflects degeneration of peripheral motor processes vs. more central 

cognitive abilities (Hultsch et al., 2000). The WCST minimizes this concern because the 

motor processes involved in this task have been dissociated from its more centrally 

demanding executive components (Marenco, Coppola, Daniel, Zigun, & Weinberger, 

1993). Furthermore, performance of the WCST is not primarily dependent upon motor 

functioning. In contrast to simple motor tasks, the WCST predominantly activates the 

right anterior dorsolateral prefrontal cortex; thus, the variability observed cannot simply 

be interpreted as instability in perceptual-motor performance.  

With respect to the fourth limitation revealed by the literature review, the present 

study attempts to overcome many of the statistical shortcomings of previous 

neuropsychological research on intraindividual variability. Employing a variety of 

response-time distributional techniques to index and graphically represent variability 

avoids the pitfalls inherent in summary statistics (such as the iSD or ICV). Previous 

similar efforts have documented strong correlations between various ex-Gaussian 

distribution parameters and measures of working memory and reasoning (Tse et al., 2010; 

Schmiedek et al., 2007), two abilities tapped by the WCST.  

In sum, four specific hypotheses are tested in this investigation. The primary 

hypothesis is that greater levels of intraindividual variability will be associated with 
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lower levels of performance on the cognitive control tests. Second, greater levels of 

simple attention will accompany lower levels of performance on the CPT (a test of basic 

attentional abilities). Third, the relationship between intraindividual variability and 

cognitive control will remain significant after controlling for basic attentional 

functioning. Fourth, intraindividual variability will be related to abstract non-verbal 

problem solving.  
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CHAPTER 3 

METHODS 

Participants 

Participants were drawn from the general population of outpatients presenting for 

neuropsychological evaluations at a large urban general hospital in western Pennsylvania. 

Archival records available within the section of neuropsychology were reviewed to 

determine whether participants met selection criteria, and all suitable protocols were 

considered for inclusion. Eligible participants were between 18 and 65 years of age. This 

particular age range was chosen to minimize age related variability, as the focus of this 

work is restricted to intraindividual variability caused by various forms of 

neuropathology. Evidence suggests that response time variability follows a U-shaped 

pattern in relation to age, with more pronounced variability towards the beginning and 

end of life (Williams et al., 2005). In addition to participants outside this age range, 

individuals with a diagnosis of intellectual disability were also barred from inclusion. 

Electronic WCST protocols were then reviewed to determine whether they met the 

following criteria: no more than 30% “other” responses (which might indicate poor task 

engagement or failure to follow instructions; Somsen et al., 2000) and a minimum of 30 

correct responses (necessary for reliable extraction of distribution parameters; Brown & 

Heathcote, 2003).  

A detailed record review was conducted for candidatess who met these criteria, in 

order to determine whether they had also completed the Stroop color-word test, COWAT, 

CPT, and TMT A & B. The results of this record review generated an initial sample of 

191 individuals. Visual inspection of WCST protocols suggested that a cutoff of 30% 
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“other” responses might not be sufficient to eliminate individuals with suspect levels of 

task engagement. More stringent criteria were applied by converting the number of 

“other” responses to z-scores and screening them using a bonferroni adjusted decision 

criterion of a =0.01 (z = 3.883).  This resulted in the identification of 3 subjects with a 

number of “other” responses suggesting marked impairment, confusion, or poor task 

engagement. These records were subsequently omitted from analyses. An additional 4 

participants were dropped due to administrative errors during data collection. The final 

sample included 184 individual participants. Demographic characteristics and 

psychometric test performance of participants appears below in Table 1.  
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Table 1 

Demographic Characteristics and Psychometric Test Performance Raw Scores 

Variable n Mean SD Range 

Age 184 42.26 13.84 18 -64 

Education 184 13.81 2.52 7 - 24 

CPT
a
     

Omissions 183 7.05 11.56 0 - 66 

Standard Error 183 7.38 3.43 2.64 - 25.09 

Variability 183 11.32 7.81 2.30 - 52.84 

WCST     

Categories
b 

184 4.38 1.99 0 - 6 

Perseverative Errors
a 

184 20.08 14.99 3 - 73 

Correct Responses
b 

184 73.45 15.02 33 - 105 

Total Errors
a 

184 39.08 23.17 7 - 95 

Accuracy
b 

184 0.67 0.16 0.26 - 0.91 

COWAT
b 

183 35.18 11.37 11 - 64 

Stroop color-word
b 

183 35.26 11.09 13 - 65 

Trail Making Test B
a 

184 85.50 44.62 33 - 300 

Note: CPT = Conners’ Continuous Performance Test - Second Edition; WCST = Wisconsin 

Card Sorting Test - Second Edition (Research Version).  
a
higher values indicate lower performance. 

b
lower values indicate lower performance. 

The study sample consisted of 93 males and 91 females from 18 to 64 years of 

age. On average, participants reported 13.81 years of education, ranging from as few as 7 

to as many as 24 years. A wide variety of diagnostic groups were represented among the 

sample participants, who were most commonly determined to have comorbid psychiatric 

and neurologic disorders. Complete test batteries were available for 181 of the 184 

participants. Of the remaining 3 participants, one did not complete the CPT, one did not 

complete the COWAT, and one did not complete the color-word trial of the Stroop test.  
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Overall test performance for the sample was determined by scoring the 

neurocognitive tests using published normative data. For the CPT and WCST, T-scores 

for all variables were calculated using their respective scoring programs. CPT data were 

scored with reference to Conners’ (1994) general population sample. The WCST was 

scored using Heaton et al.’s (1993) age and education corrected normative data. COWAT 

and TMT-B raw scores were first transformed into age and education corrected z-scores 

using Mitrushina’s (2005) meta-analytic normative data and were then converted to t-

scores with a mean of 50 and standard deviation of 10. Golden & Freshwater’s (2004) 

normative data were used to calculate t-scores for the color-word trial of the Stroop test.  

On the CPT inattention variables (i.e., omissions, hit RT SE, hit RT SE 

variability), participants scored on average 1 SD lower than the normative sample, 

indicating that their performance was low average in comparison to members of the 

general population. A similar pattern was observed on the other study variables, as 

overall sample performance was approximately 1 SD lower that of the reference groups 

on all neurocognitive tests (with the exception of TMT-B). Performance on this measure 

was 0.65 SDs lower than the reference group, perhaps due to the relatively greater 

variability in performance on TMT-B observed in the general population.  

Across-participant consistency in performance on the neurocognitive tests varied 

widely depending upon both index and instrument. The greatest ranges of performance 

were observed for CPT inattention variables and TMT-B. With respect to CPT omissions, 

participants’ t-scores varied from 20 to 240; hit RT standard error t-scores ranged from 

29 - 112, and hit RT variability t-scores from 30 - 96. Finally, TMT-B t-scores ranged 

from 30 - 124. The standard deviations of these varibles are all greater than 10, 
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suggesting that the the performance level of study participants was somewhat more 

variable than the relevant normative samples for these instruments. On the basis of these 

data, a series of univariate and multivariate outlier screening procedures were employed 

(as outlined in detail, below) in order to determine whether these scores represented 

outlying data points or neuropsychologically meaningful variation in observed 

performance.  

Descriptively, observed levels of performance ranged from superior to extremely 

low on all cognitive tasks. Overall, these data suggest that the sample adequately reflects 

a wide range of different clinical diagnoses and neurocognitive skill levels. The pattern of 

data suggests that this sample adequately reflects the diversity of performance levels 

encountered in clinical practice, and that the results of analyses reported below are likely 

to generalize across a wide variety of diagnostic groups and levels of ability. Descriptive 

statistics for demographically corrected neurocognitive test performance characteristics 

of the sample are depicted below in Table 2.  
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     Table 2 

Demographically Corrected Psychometric Test Performance (T-Scores) 

Variable n Mean SD Range 

CPT
a
     

Omissions 183 64.18 36.78 40 - 240 

Standard Error 183 59.18 14.51 29 - 112 

Variability 183 57.65 12.69 30 - 96 

WCST
b
     

Categories
c
 184 - - - 

Perseverative Errors
a 

184 43.27 11.83 20 - 81 

Correct Responses
c
 184 - - - 

Total Errors
a 

184 41.65 10.24 20 - 66 

Accuracy
c
 184 - - - 

COWAT
b 

183 42.26 10.06 20 - 68 

Stroop color-word
b 

183 41.97 10.82 22-70 

Trail Making Test B
a 

184 56.46 16.51 30 - 124 

Note: CPT = Conners’ Continuous Performance Test - Second Edition; WCST = Wisconsin Card 

Sorting Test - Second Edition (Research Version).  
a
higher values indicate lower performance. 

b
lower values indicate lower performance. 

c
Published normative data permitting conversion to t-scores not available. 

Measures 

The Wisconsin Card Sorting Test – Computer Version II (WCST-CV2).  

The WCST (and its analogue the WCST-CV2) is an attentionally demanding, 

complex measure of abstract non-verbal problem solving with a long tradition of use in 

research and clinical practice (Heaton et al., 1993; Somsen et al., 2000). The basic format 

of the task requires the examinee to match a stimulus card to one of four response cards 

on the basis of varying stimulus features (i.e., color, form, or number). After 10 correct 

responses, the sorting principle is then changed (unbeknownst to the examinee). The 

administration continues until the examinee either successfully completes six categories 
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or sorts all 128 cards. The specific version utilized in the present study is a computerized 

administration based on Heaton’s (1981) scoring system that records the time from 

stimulus presentation to a correct or incorrect response (i.e., response time) as well as 

more standard clinical variables. Response time is calculated with centisecond resolution, 

representing a somewhat coarser measurement than typically employed in studies of 

intraindividual response time variability (which frequently employ instrumentation 

capable of at least 1 millisecond resolution).  

 Reliability data for this instrument are somewhat variable in response to different 

populations and methodologies (see Nyhus & Barceló, 2009 for a review). The most 

recent set of norms provided in the manual by Heaton and colleagues (1993) lists 

generalizability coefficients ranging from .39 to .72, with an average of .57 and a median 

of .60. By some standards these can be considered moderately reliable, and by other 

standards moderate to good. Heaton’s scoring system permits 15 different indices to be 

derived, of which four have been chosen for the current analysis (i.e., categories 

completed, perseverative errors, total number of correct responses, total number of 

incorrect responses).  

The validity of the WCST has been examined through investigations using 

clinical methods, functional neuroimaging, and cortical lesion mapping. Early lesion 

studies indicated that WCST performance is more affected by lesions to the DLPFC 

(Milner et al., 1963) and general frontal cortex (Heaton, 1981) than it is by non-frontal 

lesions. Individuals with diffuse non-frontal lesions, however, also perform poorly on this 

task (Heaton et al., 1993). More contemporary lesion mapping studies suggest that the 

WCST perseverative errors score is sensitive to the integrity of the rostral anterior 
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cingulate cortex and left medial superior frontal gyrus in addition to other non-frontal 

brain regions, areas found to be crucially important in flexibly switching between 

response or instruction sets (Gläscher et al., 2012).  

Neuroimaging studies highlight the activation of the DLPFC and frontopolar 

cortex during the performance of the WCST. Bilateral increased activity in frontopolar 

cortex (Brodmann’s Area 10) and DLPFC (Brodmann’s Area 9/46) have been observed 

in FMRI studies of computerized versions of the task (Berman et al., 1995; Nagahama et 

al., 1996). Authors have speculated that frontopolar cortical activation in particular may 

be involved in feedback evaluation and hypothesis generation/evaluation, two mental 

processes specifically implicated in WCST performance (Christoff & Gabrielli, 2000). 

Others have suggested that area 9/46 is also activated when subjects must relate test 

feedback information to earlier events stored in working memory (i.e., when receiving 

positive or negative feedback; Monchi, Petrides, Petre, Worsley, & Dagher, 2001). 

Overall, the evidence highlights the substantial contributions of the DLPFC and 

frontopolar cortex to WCST performance, in addition to other non-frontal brain regions.  

Conners’ Continuous Performance Test – Second Edition (CPT-II).  

Conners’ CPT-II is one of many variants of the Continuous Performance Test, 

pioneered by Rosvold, Mirsky, Sarason, Bransome, & Beck (1956). Various forms of this 

test have a long history of use in schizophrenia research (Orzack & Kornetsky, 1966). 

Conners’ version presents stimuli in the form of letters on a computer screen separated by 

interstimulus intervals that vary from one to four seconds. The examinee is instructed to 

press a key as quickly as possible in response to every letter beside X. This 

implementation requires a higher frequency of responding than previous iterations of the 
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CPT, during which the examinee is traditionally instructed to respond only to targets (i.e., 

X) and to ignore non-targets (Conners, 2000). Statistically, more frequent responding 

results in greater reliability for various performance indices. Three CPT performance 

metrics are utilized in the present study: omissions, hit RT standard error (hit RT SE), 

and hit RT standard error variability (hit RT variability).  

Omission errors occur when the examinee fails to respond to a target stimulus, 

indicating a lapse of attention or failure to orient to the test (Conners, 2000). By contrast, 

hit RT SE reflects the standard deviation of an individual’s log-transformed response 

times on target trials (collapsed across interstimulus intervals) and as such, it is a measure 

of response time variability from trial to trial. Hit RT SE variability indexes within-

individual response consistency across occasions; specifically, the consistency of 

responding over the 18 sub-blocks of the task. Consequently, it represents an index of 

variability across occasions. Omissions, hit RT SE, and hit RT SE variability are all 

thought to reflect inattentiveness.  

The split-half reliability coefficients for omission errors and hit RT SE are high (r 

= .94 and r = .87, respectively) as reported in Conners’ original 520 case standardization 

sample (Conners, 1994). Split half reliability for hit RT SE variability is somewhat lower 

(r = .66). Test-retest stability coefficients for all three variables are lower than their 

reliabilities, ranging from r = .60 (hit RT variability) to r = .84 (omissions). Lower test-

retest reliability may reflect the sensitivity of the CPT to subtle fluctuations in various 

neurophysiological substrates across occasions rather than unreliability per se as a 

psychometric instrument. The review up to this point gives substantial credence to such 

an interpretation.  
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In validity studies, the CPT-II has been found to be sensitive to neurologic 

dysfunction of various types (including psychiatric disturbance, attention 

deficit/hyperactivity disorder, and temporal lobe epilepsy; Strauss et al., 2006). 

Clinically, omissions, hit RT SE, and hit RT variability were found to differentiate 

between ADHD individuals and normal controls in Conners’ original standardization 

sample (Conners, 1994). In this study, his “neurological” group was significantly less 

consistent and made significantly more omission errors than the ADHD group. Research 

has generally converged on an understanding of various CPTs as measures of sustained 

attention that depend upon intact cortical, subcortical, and functional systems to include 

various regions of the frontal lobes.  

The multitude of different CPTs and widely distributed nature of the attentional 

system, however, make definitive statements about the neurostructural bases of Conners’ 

CPT problematic (Riccio, Reynolds, Lowe, & Moore, 2002). The three performance 

indices in the present study were chosen due to their conceptual similarity with 

hypothesized first-stage executive functioning processes rather than evidence indicating 

that they map on to brain regions that subserve this cognitive skill (Petrides, 1995). The 

CPT paradigm involves “comparisons between, or judgments about the occurrence or 

non-occurrence of remembered stimuli,” synonymous with published descriptions of 

first-stage working memory (Owen, 2000, p. 34). Nonetheless, some fMRI studies have 

found evidence of ventral prefrontal activation during the performance of Conners’ CPT, 

consistent with the interpretation that it does involve first-stage executive processing 

(Ogg et al., 2008). 
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The Stroop Color-Word Test (Stroop). 

The Stroop test was formally adopted by Stroop (1935), but its roots can be traced 

to paradigms used by Cattell near the beginning of the 20
th

 century (Mitrushina, 2005). It 

is a measure of selective attention, response inhibition, and conflict monitoring (aspects 

of cognitive control). The color-word trial requires the examinee inhibit a dominant 

word-reading response in favor of a novel color-naming response while reading a list of 

color-words. This is the most challenging task condition and has been found to 

differentiate between clinical groups with greater reliability than other test conditions 

(Strauss et al., 2006). The Stroop variant utilized in this investigation is the Golden 

version, which is one of the more common iterations employed in clinical practice 

(Golden & Freshwater, 2002). The performance index included in analyses is 

performance on the color-word trial, as evidenced by the total number of color-words 

correctly named during a 45-second time interval.  

The test-retest reliability of the Stroop color-word score is adequate, with a 

reliability coefficient of .73 in both large-scale group administrations (N = 450) and 

smaller individual administrations (N = 30; Golden, 1975). Investigations by other 

researchers have generally confirmed these results (Franzen, Tishelman, Sharp, & 

Friedman, 1987). The Stroop test is subserved by working memory, as this cognitive 

ability seems to predict Stroop performance (Kane & Engle, 2003). There is some 

evidence that this instrument measures frontal/executive processes from studies of closed 

head injury; lesions to bilateral superior medial frontal areas of the cerebral cortex effect 

both slowness and a lower rate of accuracy (Stuss, Floden, Alexander, Levine, & Katz, 

2001). Neuroimaging studies show right frontal activation during the color-word 
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interference condition (Bench et al., 1993). Poor performance on the color-word trial of 

the stroop test has been found accompanying left DLPFC damage in large-scale cortical 

lesion mapping studies, consistent with other evidence that underscores this region’s role 

in response inhibition (Gläscher et al., 2012).  

Controlled Oral Word Association Test (COWAT).  

The COWAT is a measure of fluency. Performance is assessed via the total 

number of words generated in response to particular starting letters over a 60-second 

interval per trial. The present study uses phonemic fluency to the letters F, A, and S, the 

characters most commonly used for this task (Strauss et al., 2006). There are differences 

in levels of performance across different letters and the internal consistency between the 

letters F, A, and S is high, with a coefficient alpha of .83 (Tombaugh, Kozak, & Rees, 

1999). The test-retest correlations for this measure are also high; in the investigation cited 

above, the authors found a reliability coefficient of .74 after more than five years had 

elapsed between administrations. This result has been confirmed in numerous studies, 

most documenting test-retest correlations in excess of .70 after varying test-retest 

intervals (Strauss et al., 2006). 

Factor analytic studies of the tests validity have implicated attentional control and 

working memory as key contributors to intact performance on verbal fluency measures 

(Brocki & Bohlin, 2004). An analysis of the processes involved in the performance of 

phonemic fluency tasks supports this notion. Words with the same first letter are unlikely 

to be organized in any kind of semantic network; thus, phonemic fluency involves the 

suppression of previous responses, monitoring one’s performance to avoid errors, and 

accessing new items (Azuma, 2004; Strauss et al., 2006). These are all attentionally 
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demanding processes, a contention supported by neuroimaging data showing activation 

of the left inferior frontal cortex and left dorsolateral frontal cortex during the 

performance of this task (Ravnkilde, Videbech, Rosenberg, Gjedde, & Gade, 2002). In 

the previous study, this finding lead the authors to conclude that phonemic fluency was a 

test relatively specific to the prefrontal cortex. Evidence from lesion mapping 

demonstrates the necessity of intact left frontoparietal cortex, anterior prefrontal cortex, 

and insula for phonemic fluency even when test performance is purified of verbal and 

memory ability (Gläscher et al., 2012).  

Trail Making Test A & B (TMT A & B). 

The Trail Making Test is a visual sequencing task that has been in use for nearly 

seven decades and debuted as part of the Army Individual Test Battery (1944). Since that 

time, it has entered the public domain, and this version of the test was used for the current 

study. On condition A (the single alternating sequence) the examinee must connect a 

series of numbers in order from 1 to 25 as fast as possible without making mistakes. On 

condition B (the double alternating sequence) they are instructed to switch between 

numbers and letters in order (i.e., 1 - A - 2 - B - 3 - C…) as fast as possible, without 

making any mistakes, until they reach the end of the sequence. The outcome measure is 

the total time to complete each sequence. TMT-B performance is used as a variable in the 

present study, given evidence that TMT-A relies on more peripheral sensory-motor 

processes (Arbuthnott & Frank, 2000). 

 The reliability of this instrument varies depending on the age range of test takers. 

In one study covering an age range of 15 to 83 years, test-retest reliability was high for 

part B (.89) following an 11 month inter-test interval (Dikmen, Heaton, Grant, & Temkin, 
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1999). Some authors have found conflicting results and overall, it seems that the test-

retest reliability of this measure is generally high but that this figure may not be robust 

across different populations and test-retest intervals (Strauss et al., 2006). Interrater 

reliability for the TMT is high for both conditions (.90 for TMT- B; Strauss et al., 2006).  

Recent investigations demonstrate correlations between TMT-B and other set 

switching tasks, despite allegations that TMT-B performance may be confounded by 

visuomotor processes (Arbuthnott & Frank, 2000). Conceptually, TMT-B is a 

prototypical measure of “set switching” or “shifting.” Neuroimaging data are generally 

consistent with this interpretation, documenting lateralized dorsolateral and medial 

frontal activity on the left side of the cerebral hemispheres in the performance of 

condition B (Zakzanis, Mraz, & Graham, 2005). These regions are also activated in the 

performance of the Stroop task and WCST test, and they seem to be related to cognitive 

flexibility and visual motor functioning (Moll, Oliveira-Souza, Moll, Bramati, & 

Andreiuolo, 2002). The TMT is also sensitive to closed-head injuries and performance is 

inversely correlated with the severity of injury (Iverson, Lange, Green, & Franzen, 2002). 

Lesion mapping efforts suggest substantial overlap between cortical areas subserving 

performance on TMT-B and WCST perseverative errors, which share conceptually 

similar set-shifting task demands (Gläscher et al., 2012). Specifically, both of these tasks 

depend upon the integrity of the anterior cingulate gyrus, with TMT-B performance more 

strongly related to the fronto-rostral area of this structure.  

Outlier Screening and Data Preparation 

Response time data from the WCST (used to fit the ex-Gaussian distribution) and 

cognitive test scores were subject to extensive data screening in order to ensure parameter 
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extraction and fidelity to the underlying assumptions of statistical tests. RT data were 

gathered from computerized records of subjects’ WCST performance. At the level of 

individual participants response times, only RTs on correct trials of the WCST were 

submitted to ex-Gaussian analyses (as is standard practice in response-time distributional 

analysis research). There are important theoretical ramifications of this decision. Because 

the WCST is a measure amenable to strategy use, it is possible that it captures both 

adaptive and maladaptive forms of variability as outlined by Li and colleagues (2004). 

The latter form of variability is expected following rule attainment (when examinees are 

sorting correctly), as fluctuation in response times may reflect variation from optimal 

levels of task performance and compromised “processing robustness.” By using correct 

trials only, analyses are more likely to capture this maladaptive form of variability.  

However, it is reasonable to assume that participants may have some correct sort 

trials during which they are engaging in rule search rather than rule application (i.e., they 

have not yet attained the sorting principle but respond correctly nonetheless). On these 

trials, variability would be expected to reflect adaptive processes (plasticity or diversity; 

Li et al., 2004). Adaptive variability has been found in a number of studies examining 

tasks that may benefit from practice or strategy use (Allaire & Marsiske, 2005). The 

presence of such adaptive variability is a potential confound in the present investigation. 

Unfortunately, the WCST paradigm does not allow for definitive detection and exclusion 

of these data points. Including these trials will represent a more stringent test of the 

relationship between intraindividual variability and executive functioning because 

adaptive forms of variability are expected to mask the effects of maladaptive variability.  
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Outlier detection and treatment was also a primary concern. When distributions 

are characterized by a defined lower bound and an undefined upper bound (e.g., response 

time distributions), they frequently display positive skew (Cousineau & Chartier, 2010). 

This makes the detection of outlying data points highly problematic to say the least and 

has stimulated a considerable amount of research in the response time literature. The use 

of cutoffs based on standardized scores (i.e., z-scores) is a practical method that is 

statistically sound (Ratcliff, 1992) and ubiquitously employed when fitting response time 

distributions. To implement this censoring method, the response times of individual 

participants are first transformed into standard scores (using the M and SD of each 

participants’ response time distribution) and then a pre-specified cutoff is applied. 

Popular cutoff values range from 3SDs (e.g., Geurts et al., 2008; Rentrop et al., 2010; Tse 

et al., 2010) to 4SDs above individual participants’ mean RT values (e.g., Leth-steensen 

et al., 2000; Schmiedek et al., 2007). Such censoring procedures typically result in an 

average loss of 1-3% of correct RT trials per participant.  

The WCST is substantially different than most tasks featured in the variability 

literature, so a series of cutoff values were investigated to determine which threshold best 

fit the study data. RTs were first standardized on a participant-by-participant basis (i.e., 

using the M and SD of a given participant’s response-time distribution). Applying cutoff 

values ranging from z = 3 to z = 5 resulted in a loss of 0.52 - 2.12% of correct RTs (as 

averaged across participants). Careful visual inspection of participants’ RT distributions 

suggested that a cutoff of 4SDs represented the best compromise between removing very 

extreme response times and eliminating potentially meaningful data in the tail of 

individual RT distributions.  Response times less than 200ms were also eliminated from 
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analyses given that they are likely to represent accidental key presses or other non-task 

related processes.  

Outlier screening was also conducted at a variable level. With data that are 

assumed to follow a normal distribution, symmetry of the data is most salient and 

outlying data points are likely to be those that deviate from the mean by a particular 

margin. The results of exploratory analyses, however, suggested substantial departures 

from normality (as indexed on the basis of skew and kurtosis) for the CPT inattention 

variables, ex-Gaussian parameter estimates, TMT-B, and WCST perseverative errors. 

There are no universally accepted procedures to use in this circumstance (Cousineau & 

Chartier, 2011). Accordingly, more careful examination of the study variables was 

necessary to determine an optimal approach.  

A decision criterion of α = 0.01 was applied on a variable-by-variable basis to 

reveal potentially outlying data points. Many authors recommend such a conservative 

decision criterion, reflecting a bias towards keeping data (Cousineau & Chartier, 2011). 

The decision criterion was then subject to Bonferroni correction on the basis of sample 

size (i.e., 1- α/2n). Applying this criterion to the entire data set resulted in the 

identification of only 11 outlying data points, representing 0.054% of the total set, and no 

more than 1.6% of any given variable. As observed by Cohen, Cohen, West & Aiken 

(2003) “if outliers are few (less than 1 - 2% of n)… they are probably best left alone” (p. 

128). Accordingly, these potentially outlying data points were retained when testing the 

study hypotheses. These univariate analyses were complemented by a series of 

multivariate outlier detection strategies to guard against unduly influential and outlying 
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data points in the regression analyses and are described in detail in their respective 

analysis sections below. 

The main study hypotheses were evaluated using a series of hierarchical multiple 

linear regression analyses. The assumptions underlying this statistical method were 

considered at all levels of data analysis. Multiple regression requires a linear relationship 

between the criterion variable and predictor variables, normality of residuals, 

homoscedasticity, and independence of errors (Field, 2013). One might assume that the 

departures from normality described above represent a threat to statistical inference, yet 

neither univariate nor multivariate normality is required for the appropriate application of 

multiple regression (Howell, 2012). Nonetheless, substantial departures from normality 

can bias the results of analyses in a number of ways, particularly when criterion variables 

are highly asymmetric (Tabachnik & Fidell, 2001). Ex-Gaussian criterion variables all 

demonstrated significant departures from normality (on the basis of skewness) and 

unacceptably high levels of kurtosis (kurtosis values were Mu = 6.89, Sigma = 10.89, 

Tau =21.50). To avoid potential complications, Mu and Tau were subject to logarithmic 

transformations and Sigma was subject to a natural logarithmic transformation, both of 

which are frequently employed in the analysis of response time data (Ratcliff, 1992). 

Skewness and kurtosis values for the transformed variables were below 1.0 (with the 

exception of Sigma), indicating adequate approximation of a normal distribution 

(Meyers, Gamst, & Guarino, 2005). Visual analysis of normal Q-Q plots confirmed that 

transformations had the expected effects. Tests for violations of statistical assumptions 

(i.e., homoscedasticity, normality of residuals, and independence of errors) are reported 

in the results section below. 
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CHAPTER 4 

RESULTS 

Ex-Gaussian Fits 

Raw response time data from the WCST were fit using the Quantile Maximum 

Probability Estimator QMPE (v. 2.18; Cousineau et al., 2004; Heathcote et al., 2002). 

This software allows the researcher to specify whether the ex-Gaussian distribution is fit 

on the basis of observed RT data (continuous maximum likelihood; CML) or quantiles 

calculated from those data (quantile maximum likelihood; QML). QML was used for all 

analyses. The program generates an exit code for each fit that provides important 

information about the degree to which data were adequately approximated by the 

likelihood solution, such as whether parameter convergence was obtained, whether 

standard error estimates are reliable, and if sample statistics (i.e., quantiles) could be 

calculated. According to the programmers:  

any exit code smaller than 32 means that both the parameter estimates and their 

standard errors and correlations are trustworthy…the parameter estimates 

themselves are probably useful as long as the exit code is smaller than 125 

(Brown, Cousineau, & Heathcote, 2004, p. 5).   

Quantiles were calculated from an average of 72.4 correct trials RTs on the 

WCST and parameter recovery was successful for all 184 participants. Parameter 

convergence occurred in fewer than 23 iterations for all fitting runs (250 were allowed). 

QMPE reported an exit code below 32 for 94% of fits, suggesting that most participants’ 

response times were fit without incident. Of the remaining 6% of participants, the vast 

majority of exit codes revealed singularity of the hessian, leading to unreliable standard 
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errors (which are not necessary to test the study hypotheses). Overall, these data suggest 

excellent parameter recovery and appropriate application of the fitting methodology. 

A series of visual analyses confirm the numerical data reported above. 

Simultaneously plotting the quantiles estimated by QMPE alongside those that 

characterize participants’ actual WCST response time distributions allows one to evaluate 

the extent to which the estimated parameters reflect participants’ actual response times. 

That is, the program provides an output of observed quantiles (i.e., actual data) and 

expected quantiles (i.e., estimated from the best fitting model). Graphing these quantiles 

yields a visual indicator of the degree of fit. In a model that fit perfectly, the expected 

quantiles would lie directly over the observed quantiles, such that the two sets of data 

points would be indistinguishable. Figure 5 presents simultaneous quantile plots for 6 

randomly selected participants. Visual inspection of these plots suggests relatively high 

equivalence between quantiles derived from the likelihood solution and those observed in 

the data. There is clearly some variation in the degree of fit, but overall, there is a high 

degree of correspondence between estimated ex-Gaussian models and the observed data. 

This visual analysis suggests that the parameters extracted from participants’ response 

times reflect the actual data quite well.  
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Figure 5. Observed vs. expected quantiles for a random sample of 6 participants. X axes reflect the 

number of quantile cut points per participant (in ascending order). Y axes display the response times 

corresponding to the quantile cut points in seconds.  
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 QMPE also provides estimates of parameter standard errors and intercorrelations. 

As depicted below in Table 3, the standard error values of the ex-Gaussian parameters 

were somewhat variable, which is significant for interpreting the regression equations 

testing the primary study hypotheses. The various parameters of a multiple regression 

model are affected by the reliability of variables in the model, such that R
2 

and Beta 

values are reduced in the presence of less reliable variables (Cohen, Cohen, West, Aiken, 

2003). Beta values are most strongly affected by reliability of the criterion variable. 

Despite relatively similar values for Mu and Tau, the standard error of Tau is nearly twice 

that of Mu; as a result, this parameter may be at a disadvantage in subsequent correlation 

analyses. Differences in the variability of parameters across participants can also affect 

regression results. For example, the range of Sigma is considerably less than that of the 

other ex-Gaussian parameters, which is expected to attenuate its correlation with the 

neurocognitive predictor variables.  
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Table 3 

Descriptive Statistics of ex-Gaussian Fits 

Variable  n Mean SD 

μ 184 1.6453 0.8883 

σ 184 0.3112 0.327 

τ 184 1.7741 1.5259 

Number of RT Observations  184 72.40 14.65 

Standard Error Mu 173 0.1519 0.1425 

Standard Error Sigma 173 0.1386 0.1291 

Standard Error Tau 173 0.2704 0.2409 

rμσ 173 0.6075 0.1842 

rμτ

 
173 -0.5137 0.1775 

rστ
 173 -0.3632 0.1865 

Note: rμσ = bivariate Pearson correlation between Mu and Sigma.  

        rμτ  = bivariate Pearson correlation between Mu and Tau 

          rστ  = bivariate Pearson correlation between Sigma and Tau. 

The parameter intercorrelations in Table 3 have important ramifications for all 

analyses that involve the ex-Gaussian parameters. Parameter dependencies are a distinct 

disadvantage of response time distributional analyses that involve fitting descriptive 

models to RT distributions (see Cousineau, Brown, & Heathcote, 2004 for a detailed 

discussion of this problem as pertaining to QMPE). Essentially, trade offs during the 

parameter estimation process lead to correlated deviations of these estimates from true 

parameter values (Schmiedek et al., 2007). As a result, the observed intercorrelations are 

a combination of each parameter’s true relationship with the other parameters and 

artifacts of the estimation process. These interdependencies can be overcome by 

specifying a measurement model of ex-Gaussian parameters (e.g., Schmiedek et al, 2007; 

Tse et al., 2012), but this methodology was not an option due to data restrictions. The 
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effects of parameter dependencies on conclusions that can be drawn from the following 

analyses are considered below in the discussion on study limitations.  

Regression Analyses of Hypothesis 1 

A series of hierarchical regression analyses were conducted to test the hypothesis 

that lower levels of cognitive control accompany greater levels of intraindividual 

variability. In these analyses, raw scores for WCST perseverative errors, TMT-B, 

COWAT, and Stroop color-word trial were used as predictors for the three ex-Gaussian 

criterion variables. Age was entered as a forced covariate in the first block of the models 

followed by a second block including the neurocognitive test scores. The order of terms 

in the model was selected via stepwise variable entry using p = 0.05 to enter and p = 0.10 

to remove. Unfortunately, the absence of sufficient background information did not allow 

theoretical pre-specification of the expected order of neurocognitive test scores.  

Moderating analyses were conducted to investigate interaction effects for all 

significant models including two or more cognitive test scores. To test moderation, 

significant cognitive control variables were first centered by subtracting their mean 

values from observed test scores. The product of the centered variables was then entered 

into a regression model as the third term (after the neurocognitive test scores from which 

it was derived). A significant interaction term indicates that the relationship observed in 

the regression model varies as a function of cognitive test performance. Interactions were 

then evaluated via 3-dimensional graphing and are interpreted below.  

Before conducting all analyses, multivariate outliers were identified by computing 

a Mahalanobis distance measure (D
2
) for the four neurocognitive test scores. D

2 
provides 

an index of the distance between individual data points and the centroid (multivariate 
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mean) of the pattern mass in multivariate space. There were no data points with a D
2 

suggesting that they significantly differed from the centroid at the prespecified level (α = 

.05). Unduly influential data points were detected on an analysis-by-analysis basis 

through computing Cook’s Distance (CDi), which is a measure of change in the 

regression coefficients that would occur if a particular case were eliminated from the 

analysis. As a very general rule of thumb, a CDi of about 1 is generally considered large 

(Cook & Weisberg, 1982). No data points achieved a CDi of greater than 0.20.  

Fidelity to the assumptions of multiple regression was examined using a variety of 

methods. Linearity was determined via visual inspection of scatter plots and then 

subsequently confirmed by significant results of the main analyses (i.e., a significant 

linear regression effect implies adequate linearity of the data). Independence of errors is 

indexed by the Durbin-Watson statistic, with values significantly below 2.0 indicating 

positive autocorrelation of residuals and values above 2.0 revealing negative 

autocorrelation. This statistic ranged from a minimum value of 1.938 (for Sigma) to a 

maximum value of 2.169 (for Tau), suggesting that the assumption of independently 

distributed error terms was tenable. The assumption of homoscedasticity was evaluated 

via plots of residual vs. predicted values and was met for all analyses except those 

involving Sigma. Submitting error terms to the Shapiro-Wilk test showed that the 

assumption of normally distributed residual variance was supported for all parameters but 

Sigma. Violations of assumptions during the analysis of Sigma are discussed in that 

section below.  

Bivariate Pearson correlations between the log-transformed ex-Gaussian 

parameters and cognitive-control variables are presented in Table 4. In general, 
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correlations with the cognitive control variables were higher for Mu and Tau than they 

were for Sigma, consistent with expectations on the basis of the literature review. The 

only variable significantly related to Sigma was TMT-B (r = .207, p = .005). The other 

ex-Gaussian parameters were meaningfully related to all of the cognitive control tasks. 

Mu bore a stronger relationship to Stroop test performance (r = -.456, p < .000) than Tau, 

while Tau’s relationship to TMT-B (r = .571, p < .000), the COWAT (r = -.340, p < 

.000), and WCST Perseverative errors (r = .520, p < .000) was greater than Mu’s. Visual 

analysis of the table suggests a small but consistent advantage to Tau in predicting 

performance on the cognitive control tests. Overall, these data suggest small to moderate 

relationships between Mu, Tau, and the cognitive control tasks, all of which are in the 

expected direction. 
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Table 4 

Pearson Correlations Between ex-Gaussian Parameters, Cognitive Control Test Scores, and Age 

 Age μ σ τ TMT-B COWAT Stroop WCST 

Age - .603** .142 .386** .250** -.169** -.349** .229** 

μ  - .407** .564** .495** -.299** -.456** .494** 

σ   - -.003 .207** -.139 -.140 .121 

τ    - .571** -.340** -.408** .520** 

TMT-B     - -.409** -.510** .479** 

COWAT      - .303** -.301** 

Stroop       - -.331** 

WCST        - 

Note: μ = base10 logarithm of Mu parameter of ex-Gaussian distribution, σ = basee  logarithm of Sigma parameter of ex-

Gaussian distribution, τ = base10 logarithm of Tau parameter of ex-Gaussian distribution, TMT-B = Trail Making Test B 

(total seconds to completion), COWAT = Total words generated to the letters FAS, Stroop = Total words named on color-

word trial of Stroop Test, WCST = WCST perseverative errors score. 

  *p< 0.05 

**p<0.01 
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For the analysis of response latency, the best fitting model was statistically 

significant (F = 72.564, p < .000) and accounted for 55.0% of the observed variance in 

Mu (R = .742). Mu was predicted by age, WCST perseverative errors, and TMT-B, such 

that increasing age and poorer performance on the cognitive tests resulted in greater 

overall response latency. Age received the strongest weight in the model, followed by 

WCST perseverative errors and TMT-B.  Examining partial correlations revealed that 

age, WCST perseverative errors, and TMT-B each accounted for 32.60%, 10.76%, and 

9.36% of the variance in Mu when controlling for the other predictors. R
2
 change values 

indicate that the combined contribution of the cognitive tests accounted for 18.1% of the 

variance in Mu. Due to their strong intercorrelations however, semipartial correlations 

with Mu were somewhat lower in the final model. Age, WCST perseverative errors, and 

TMT-B uniquely explained 21.71%, 5.43% and 4.62% of the variance in Mu, 

respectively. The regression coefficients of the predictors as well as their squared partial 

and semipartial correlations with Mu are shown in Table 5. 
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Table 5 

Results of Regression Analyses (Final Models)Predicting Mu, Sigma, and Tau From Cognitive Control Test Performance 

 μ  σ  τ 

 R
2
 b β rpartial rsemi   R

2
 b β rpartial rsemi  R

2
 b β rpartial rsemi 

                  

 .550      .058      .451     

Age  .007 .485 .571 .466   .011 .113 .112 .110   .004 .225 .280 .216 

TMT-B  .001 .248 .306 .215   .006 .002 .183 .181   .002 .376 .403 .326 

WCST  .004 .267 .328 .233         .005 .289 .322 .252 

Note: μ = base10 logarithm of Mu parameter of ex-Gaussian distribution, σ = basee logarithm of Sigma parameter of ex-Gaussian distribution, τ = base10 logarithm 

of Tau parameter of ex-Gaussian distribution, R
2 
= multiple correlation coefficient, b = unstandardized regression coefficient, β = standardized regression 

coefficient, rpartial = partial correlation coefficient between criterion and predictor, rsemi = semipartial correlation coefficient between criterion and predictor. 

Parameters from final model only. 

For Sigma, the final best fitting regression was significant (F = 5.528, p = .005) but this time accounted for only 5.8% of the 

variance (R = .241). In this model, age received the strongest weight followed by TMT-B. Age uniquely predicted 1.21% of the 

variance in Sigma and TMT-B predicted 3.28% as evidenced by their squared semipartial correlations. Pertinent indices from this 

analysis are displayed in Table 5 but should be interpreted with caution given violations of homoscedasticity and normality of 

residuals. Visual inspection of the regression standardized residual vs. predicted values suggested potential heteroskedasticity, which 

would render significance tests for regression weights less reliable. 
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Normality of residual variance was also violated (Shapiro-Wilk = .792, p < .000) 

which frequently occurs in the presence of heteroskedastic variables. Violation of these 

assumptions is likely to be caused by the significantly positively skewed distribution of 

Sigma in the current sample. Non-normality was improved by the natural logarithmic 

transformation used in all analyses but could not be eliminated. Logarithmic, inverse, and 

inverse square root transformations were not effective at reducing Sigma’s level of 

positive skew and kurtosis.  

In the analyses of intraindividual variability, the final model was also significant 

(F = 48.741, p < .000) and accounted for 45.1% of observed variance in Tau. The 

structure of the model was similar to that for analyses of Mu, in that age, TMT-B, and 

WCST perseverative errors were all significant predictors of Tau. In this model, age 

received the strongest weight, followed by TMT-B and WCST perseverative errors. In 

contrast to the analyses of Mu however, the unique contribution of age was substantially 

less than that of the cognitive test scores. TMT-B and WCST perseverative errors jointly 

contributed to the prediction of 30.3% of the variance in Tau (as evidenced by R
2
 change 

values). Semipartial correlations revealed that Age, TMT-B, and WCST perseverative 

errors each uniquely accounted for 4.67%, 10.63%, and 6.35% of Tau’s variance, 

respectively. The interaction effect between TMT-B and WCST perseverative errors was 

significant for the overall model including Age, TMT-B, WCST perseverative errors, and 

the interaction effect of the latter term (F = 39.194, p < .000). In this model, the 

interaction effect achieved a Beta weight of -.153 (t = -2.248, p = .026).  This 

interaction was explored graphically by removing the linear effect of age from all 

variables in the analysis and plotting the regression surface of a model predicting Tau 
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from the cognitive tests (Figure 6). As seen below, the moderate positive correlation 

between Tau and TMT-B became weaker at lower levels of WCST performance. In 

addition, the relationship between Tau and WCST performance became weaker and then 

reversed at the lowest levels of TMT-B performance. There are several alternative 

explanations for this interaction that are explored in detail below. One possibility is that 

individuals who fared extremely poorly on TMT-B demonstrated more consistent poor 

performance on the WCST as perseverative error scores increased. Another possibility is 

that individuals who performed poorly on either the TMT or WCST were all highly 

variable, introducing a restriction of range and instability in the regression weights.  

 

Figure 6. Regression surface of the linear model predicting Tau from Trail Making Test B, Wisconsin 

Card Sorting Test Perseverative Errors, and their interaction. The effects of age were removed from all 

variables prior to computing the regression equation. 

Visual Analyses of Hypothesis 1 

Quantile-quantile plots can provide a visual analysis of between group differences 

in RT distributions and clarify the results of statistical analyses (Balota et al., 2008). This 

methodology was used to graphically investigate the shape of RT distributions for 
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individuals with high vs. low cognitive control (as measured by the neurocognitive tests). 

These analyses allow for detailed evaluation of the significant correlations reported above 

by simultaneously examining the contributions of all three ex-Gaussian parameters across 

the entire response time distribution. It is important to note that these plots do not directly 

correspond to the regression analyses, however, because the effects of demographic 

variables were removed to make the results more meaningful.  

Analyses were carried out on a test-by-test basis. To form these plots, participants 

were first ranked (using demographically corrected t-scores) in order of their 

performance on TMT-B, WCST perseverative errors, COWAT, and Stroop color-word 

trial. Ranking in this fashion is functionally equivalent to controlling for demographic 

variables in a statistical analysis. Groups of high vs. low cognitive control ability were 

formed by sampling participants in the highest and lowest quartiles of performance for 

each cognitive test. RT data for these participants was then re-fit using QMPE with a 

prespecified number of quantiles. Next, quantiles were averaged across participants 

within a given group. The resulting quantile bands represent group level RT distributions. 

Contrasting the two quantile bands allows one to index differences in the shape of RT 

distributions for those in the highest vs. lowest quartiles of ability on each cognitive task. 

The results of these graphical analyses appear below in figures 7 - 10. 
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Figure 7. Quantile plot displaying the RT distributions of the highest vs. lowest quartiles of performance 

on TMT-B. RT displayed in seconds.  

Figure 7 depicts the shape of RT distributions for high vs. low scorers on TMT-B. 

The vertical distance between the two quantile bands demonstrates an effect in Mu, 

meaning that participants with stronger performance were, on average, also faster in 

completing the WCST. A Tau effect is also evident, as separation between the bands 

increases in an accelerating fashion at progressively more extreme response time values. 

That is, increased separation is observed in the later quantiles. Quantiles 8 - 10 of the 

poorest performing subjects (representing the slowest 20% of response times for each 

group) show particular acceleration, which suggests a maximal Tau effect for these 

quantiles.  There is no obvious effect for Sigma, which would present as a sigmoid shape 

in the quantile band.
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Figure 8. Quantile plot displaying the RT distributions of the highest vs. lowest quartiles of performance 

on WCST (perseverative error score). RT displayed in seconds. 

For the WCST (Figure 8), the effects in Mu and Tau are also apparent. Again, 

separation between the bands shows group differences in Mu. The effect in Mu for this 

cognitive test appears to be larger than for the TMT, consistent with the regression 

analyses that suggested a greater correlation between Mu and WCST performance than 

for Mu and TMT-B performance. The effect in Tau seems to be more distributed across 

quantiles for the WCST than the TMT, as acceleration is evident beginning at Quantile 6 

or 7. There is no obvious effect in Sigma.  

 The Stroop test and COWAT were not significant predictors of Mu, Sigma, or 

Tau in the regression analyses, but bivariate correlations of these tests and the ex-

Gaussian parameters were significant. Bivariate correlations of the Stroop were small (r = 

-.456, p < .000) for Mu, non-significant (r = -.140, p = .059) for Sigma, and small (r = -

.408, p < .000) for Tau. The relationship between the COWAT and the ex-Gaussian 

parameters was negligible to small (r = -.299, p < .000) for Mu, small for Tau( r = -.340, 

p < .000) and non-significant (r = -.139, p = .061) for Sigma. The quantile plots below 
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are consistent with these correlational analyses, as shown in Figure 9 (Stroop) and Figure 

10 (COWAT). Effects in Mu are evident from the separation of quantile bands and 

effects in Tau are apparent from increasing acceleration across slower quantiles. These 

effects appear to be almost the same magnitude as those observed in WCST and TMT-B 

performance. Because participants were ranked on the basis of demographically corrected 

t-scores (removing these effects of these variables in the visual analyses), it is possible 

that demographically corrected Stroop and COWAT scores might be significant 

predictors of Mu and Tau in regression analyses but failed to achieve significance in tests 

of hypothesis one due to the presence of demographically related error variance.  

 

Figure 9. Quantile plot displaying the RT distributions of the highest vs. lowest quartiles of performance 

on the Stroop color-word trial. RT displayed in seconds. 
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Figure 10. Quantile plot displaying the RT distributions of the highest vs. lowest quartiles of 

performance on the COWAT. RT displayed in seconds.  

Regression Analyses of Hypothesis 2 

 Hypothesis two states that intraindividual variability will be related to more basic  

“first stage” executive functions. These cognitive skills involve the effortful deployment 

of simple attentional resources, such as holding information in abeyance in order to make 

comparisons about the occurrence or non-occurrence of a stimulus (Owen, 2000). In the 

regression analyses testing this hypothesis, variables from the CPT (i.e., hit RT SE, hit 

RT Variability, and omissions) were specified as predictors of the ex-Gaussian 

parameters. Because hit RT SE represents a prototypical measure of intraindividual 

variability, tests of this hypothesis also provide an index of the extent to which variability 

on the WCST is related to more traditional measures of variability. Technically, hit RT 

SE is a measure of two-choice reaction time variability (as indexed by the intraindividual 

standard deviation; iSD). The general procedure for specifying the regression models was 

the same as in tests of hypothesis one. Age was entered as a forced covariate in the first 

block of the models and CPT scores were selected via stepwise variable entry (p = 0.5 to 
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enter, p = 0.10 to remove) during a second block. Interaction effects were tested using the 

same procedure as in tests of hypothesis 1. None of the interaction terms achieved 

significance in the final models.  

 Data preparation for these analyses proceeded in exactly the same fashion as in 

the tests of hypothesis 1. Screening on the basis of Mahalanobis distance resulted in the 

identification of 4 multivariate outliers at the .01 level that were removed from 

subsequent analyses. There were no unduly influential cases present in the data, as 

evidenced by a maximum CDi of 0.23. Examination of Durbin-Watson values, predicted 

vs. residual plots, and Shapiro-Wilk tests of residual variance supported the tenability of 

statistical assumptions for all variables (with the exception of Sigma). The details of these 

violations during the analysis of Sigma are reported in the relevant section below. 

Bivariate correlations between the ex-Gaussian parameters, CPT variables, and age 

appear below in Table 6.  
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Table 6 

Pearson Correlations Between ex-Gaussian Parameters, CPT Test Scores, and Age 

 Age μ σ τ Omissions Hit RT SE Variability 

Age - .603**  .142 .386**     .001      .040 -.122 

μ  -  .407**  .564** .165* .149* .023 

σ   -  -.003     .022 -.018 -.052 

τ    -   .363** .369** .208** 

Omissions     - .717** .629** 

Hit RT SE      - .831** 

Variability       - 

Note: μ = base10 logarithm of Mu parameter of ex-Gaussian distribution,  σ = basee Logarithm of Sigma 

parameter of ex-Gaussian distribution, τ = base10 logarithm of Tau parameter of ex-Gaussian distribution, 

Omissions = CPT Omisions, Hit RT SE = CPT Hit RT Standard Error, Variability = CPT Hit RT Standard 

Error Variability. 

*p<.05   

**p< 0.01 
 The correlations of the ex-Gaussian parameters and the CPT variables ranged 

from negligible (r = -.018, n.s.) to small (r = .369, p < .000). This set of bivariate 

correlations largely favored Tau. The correlation between Tau and omissions (r = .363, p 

< .000) as well as Tau and hit RT SE (r = .369, p < .000) were both small. Mu was 

negligibly correlated with these variables. In addition, Tau was the only ex-Gaussian 

parameter significantly related to hit RT SE variability (r = .208, p < .000). Sigma was 

not significantly related to any of the CPT variables. Intercorrelations between the CPT 

variables were generally high and suggest the presence of possible collinearity. 

Consequently, tolerance and variance inflation factor were calculated for all variables in 

the analyses and are reported below to assess the extent of any collinearity in the final 

models.  
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 The final regression modeling response latency as a function of the CPT variables 

was significant (F = 52.580, p < .000) and successfully predicted 37.4% of the variance 

in Mu. Age and Omissions emerged as significant predictors of Mu. Age accounted for 

overwhelming portion of unique variance in the model (34.93%) with the additional 

modest contribution of Omissions (2.0%), as evidenced by the semipartial correlations of 

these two variables. In this regression, tolerance values were high (0.999) and variance 

inflation factor values were low (1.001), suggesting that multicollinearity did not pose a 

significant problem in the estimation of the final model.  

Only age was significant in the model assessing Sigma and this variable 

accounted for a negligible portion of the variance in this parameter (1%). The low t 

values for the tests of regression coefficients associated with the CPT variables may be 

due, in part, to violations of underlying statistical assumptions. Heteroscedasticity can 

bias ordinary least squares estimates of the variance (and hence standard error) of 

regression coefficients, thus rendering tests for significance less reliable. This may result 

in either type 1 or type 2 errors in tests of regression coefficients. Alternatively, these 

results are consistent with previous reports that Sigma is only weakly associated with 

measures of attention (Tse et al., 2010), does not discriminate reliably between clinical 

groups (Rentrop et al., 2010), and is less affected by CNS pathology than Mu and Tau 

(Spieler, Balota, & Faust, 1996).  With the caveat above, it is likely that Sigma’s 

relationship to the CPT variables is either quite small or statistically insignificant.  

 In the model of intraindividual variability, age and hit RT SE significantly 

predicted 24.7% variance in Tau (F = 28.823, p < .000). Age received the strongest 

weight by a small margin followed by hit RT SE. These predictors accounted for similar 
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portions of variance due to their low intercorrelations, as Age uniquely accounted for 

13.1% of the variance in Tau and hit RT SE uniquely accounted for 10.24% of the 

variance. This result demonstrates that intraindividual variability on the WCST, a 

complex abstract reasoning task, is related to variability on simpler tests of choice 

reaction time variability. Tolerance values were high (0.997) and variance inflation 

values were low (1.003) for both terms in the model, consistent with the interpretation 

that multicollinearity did not significantly affect the results. Omissions achieved 

statistical significance during the first step of the model but did not substantially 

contribute after the addition of hit RT SE (p = .078). This is somewhat surprising given 

previous associations between intraindividual variability and lapses of attention (e.g., 

West et al., 2002) and highlights the importance of task characteristics for the study of 

intraindividual variability.  The results of this analysis are featured alongside those for 

Mu and Sigma in Table 7. 
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Table 7 

Results of Regression Analyses (Final Models) Predicting Mu, Sigma, and Tau From CPT Test Performance 

 μ  σ  τ 

 R
2
 b β rpartial rsemi   R

2
 b β rpartial rsemi  R

2
 b β rpartial rsemi 

                  

 .374      .010      .247     

Age  .009 .591 .599 .591   .009 .098 .098 .098   .007 .362 .385 .362 

Omissions  .003 .143 .177 .142         - - - - 

Std. Error              .027 .321 .346 .320 

Variability                  

Note: μ = base10 logarithm of Mu parameter of ex-Gaussian distribution, σ = basee logarithm of Sigma parameter of ex-Gaussian distribution, τ = base10 logarithm of Tau 

parameter of ex-Gaussian distribution, R
2 
= multiple correlation coefficient, b = unstandardized regression coefficient, β = standardized regression coefficient, rpartial = 

partial correlation coefficient between criterion and predictor, rsemi = semipartial correlation coefficient between criterion and predictor, Omissions = CPT Omissions, 

Std. Error = CPT Hit RT Standard Error, Variability = CPT Hit RT Standard Error Variability. Parameters from final model only. 
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Visual Analyses of Hypothesis 2 

Quantile plots of the CPT variables were constructed via the same methodology 

used to visually investigate hypothesis 1. In these analyses, cognitive test performance on 

the various CPT indices was ranked via demographically corrected t-score. The RT data 

of participants in the highest vs. lowest quartiles of performance were refit with QMPE 

and then averaged across participants to create quantile bands representing group level 

RT distributions. The results appear below in Figures 11 - 13.  

 

Figure 11. Quantile plot displaying the RT distributions of the highest vs. lowest quartiles of 

performance on the CPT Hit RT Standard Error. RT displayed in seconds.  

 These plots generally confirm the relationships observed during statistical tests of 

hypothesis 2. For Hit RT SE, increasing distance between the quantile bands at more 

extreme values (i.e., acceleration) suggests a primary effect for Tau. Though there is 

some separation between the quantile bands in this plot (that might suggest an effect in 

Mu), it is minimal at faster RT values. The effect appears to be more widely distributed 

across the RT distribution than for the cognitive control variables, with acceleration 

evident at approximately the 6
th

 quantile. There is a minimal effect of Mu, consistent with 
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the modest bivariate correlation of this parameter with Hit RT SE. There is no obvious 

effect of Sigma.  

 

Figure 12. Quantile plot displaying the RT distributions of the highest vs. lowest quartiles of 

performance on the CPT Hit RT Standard Error Variability (RT displayed in seconds). 

For omissions (Figure 12) there is little visual evidence for an effect in Mu, which 

would present as separation in the quantile bands. Some positive acceleration (beginning 

perhaps at quantile 6 or 7) is evidence of an effect in Tau. There is no obvious effect for 

sigma. This plots highlights the fact that it is difficult to judge the point at which an effect 

becomes significant using visual RT distributional analysis, because the modest bivariate 

correlation of Mu with omissions is not readily apparent. The moderate correlation with 

Tau, however, is quite visible. In the setting of small effect sizes, definitively attributing 

an effect to Mu or Tau is further complicated by the statistical dependencies of these 

parameters when fit via quantile maximum likelihood estimation. Nonetheless, the plot is 

instructive in that it generally shows some degree of separation and acceleration 

(consistent with the statistical analyses) in the expected directions.  
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 Finally, the plot for hit RT SE variability appears below in Figure 13. As with the 

plot for omissions, it is difficult to discern the precise nature of effects. Some positive 

acceleration appears in quantiles 7 to 10, consistent with an effect in Tau. The separation 

between the quantile bands is minimal and appears to be somewhat less than observed for 

the other CPT variables or the cognitive control tasks. Accordingly, it does not appear 

that Mu reliably differentiates between high vs. low performers ranked on the basis of 

this performance index. This result mirrors the findings of the correlational analyses and 

regression analyses, both of which failed to detect a significant relationship between Mu 

and hit RT SE variability.  

 

Figure 13. Quantile plot displaying the RT distributions of the highest vs. lowest quartiles of 

performance on the CPT Hit RT Standard Error Variability (RT displayed in seconds). 

Regression Analyses of Hypothesis 3 

It is possible that the significant relationships observed between response latency, 

intraindividual variability, and the cognitive control tasks were simply the results of 

individual differences in basic attentional functions rather than higher-order cognitive 

skills.  A series of linear regression models were constructed to examine this possibility. 
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These models were specified in three blocks: Age was entered as a forced covariate in the 

first block, the CPT (i.e., stage one) variables were introduced via stepwise variable entry 

during the second block, and the cognitive control (i.e., stage two) tests were then entered 

in a third block (also employing stepwise variable entry). The resulting models test the 

relationships between the ex-Gaussian parameters and cognitive control tasks, controlling 

for the effects of basic attentional skill. Because Sigma was not significantly predicted by 

any of the stage one CPT variables, the results of any analyses under hypothesis three 

would be functionally identical to those under hypothesis one. As a result, this variable 

was not investigated under hypothesis three.  

To facilitate comparisons with tests of hypothesis one and two, the four outlying 

cases from hypothesis two (identified on the basis of D
2
) were eliminated from the 

following analyses. Fidelity to underlying statistical assumptions was evaluated by the 

same methodology employed in the other hypothesis tests. Durbin-Watson values ranged 

from 1.724 (for tests of Tau) to 2.087 (for tests of Mu), suggesting that independence of 

errors was tenable. Visual plots of standardized predicted values vs. residuals revealed 

relative homoscedasticity (with the exception of Sigma). Shapiro-Wilk tests for normality 

of residual variance were .997 for Mu (p = .968) and .995 (p = .752) for Tau. In sum, 

statistical assumptions were supported for all variables. None of the interaction terms 

were significant for any of the models.  
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Table 8 

Pearson Correlations Between Cognitive Control Test Scores and CPT Variables 

 Omissions Hit RT SE Variability TMT-B Stroop COWAT WCST 

Omissions - .642** .654** .235** -.208** -.155* .225** 

Hit RT SE  - .874** .307** -.321** -.198** .218** 

Variability   - .223** -.207** -.194** -.154* 

TMT-B    - -.495** -.402** .491** 

Stroop     - .289** -.332** 

COWAT      - -.300** 

WCST       - 

Note: Omissions = number of CPT omission errors, Hit RT SE = CPT hit RT Standard Error, Variability = CPT 

hit RT Standard Error Variability, TMT-B = Trail Making Test B (total seconds to completion), COWAT = Total 

words generated to the letters FAS, Stroop = Total words named on color-word trial of Stroop Test, WCST = 

WCST perseverative errors score. 

*p< 0.05 

**p<0.01 

Bivariate correlations between the cognitive control tests and CPT variables are 

depicted in Table 8. The CPT variables were significantly related to the cognitive control 

tests in the expected direction, with bivariate Pearson correlations ranging from r = -.154, 

(p = .040, hit RT SE variability and perseverative errors) to r = -.321 (p  < .000; hit RT 

SE and Stroop). By standard conventions, these represent negligible to small effects. 

Correlations were modestly higher between hit RT SE and the cognitive control tasks 

than they were for the other CPT variables. As reported above under tests of hypothesis 

2, intercorrelations were moderate to high between the CPT variables.  

The final regression model predicting response latency from the cognitive control 

tests and CPT variables was significant (F = 50.558, p < .000) and accounted for 54% of 
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the variance in Mu. In addition to age, both perseverative errors and TMT-B emerged as 

significant predictors of Mu (in order of entry). The effect of omissions was significant 

during the second step of the model (p  = .021), but failed to achieve significance 

following the addition of TMT-B and perseverative errors (p = .625) during the third step. 

This pattern of results suggests that the modest correlation observed between Mu and 

Omissions in the second step of the model was primarily the result of a small portion of 

variance that this performance index shared with TMT-B and perseverative errors. Thus, 

it does not appear that basic attentional functions mediate the relationship between 

response latency and cognitive control.  

Examination of R
2
 change values reveals that the block containing the cognitive 

control tests accounted for 16.2% of the variance in Mu controlling for the effects of 

stage one functioning. In the final model, age accounted for the majority of unique 

variance in response latency (22.09%), followed by perseverative errors (5.19%) and 

TMT-B (4.04%). The contribution of omissions was modest, as this measure of simple 

attention and orientation only accounted for .06% unique variance.  Qualitatively 

speaking, poorer performance on TMT-B and perseverative errors resulted in greater 

response latency after controlling for basic attentional functioning.  

The model predicting intraindividual variability was also significant (F = 37.33, p 

< .000) and accounted for 46.5% of the total variance in Tau. Age, hit RT SE, TMT-B, 

and perseverative errors emerged as significant predictors of Tau (in order of entry in the 

final model). As expected, increasing age and poorer performance on the neurocognitive 

tests was associated with increased variability. The cognitive control variables took up 

the greatest portion of unique variance in the final model, as they jointly accounted for 
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21.8% of the variance in Tau (on the basis of R
2
 change values). The squared semipartial 

correlations demonstrate that perseverative errors uniquely accounted for the greatest 

proportion of variance in Tau (7.08%) followed by TMT-B (5.48%). The unique 

contribution of age was 5.2% and the contribution of hit RT SE was 2.79% of the unique 

variance in Tau. Thus, it appears the relationship between intraindividual variability and 

cognitive control is partially mediated by stage one working memory processes (as 

measured by the CPT).  

In contrast to the analyses of mean response latency, controlling for stage one 

functioning decreased the observed correlations between intraindividual variability and 

cognitive control. The total unique contribution of the cognitive control variables was 

reduced from 30.3% unique variance in the model under hypothesis 1 (i.e., without 

controlling for stage one functions) to 21.8% unique variance in the model controlling for 

stage one functions. This suggests that a portion of the relationship between cognitive 

control and intraindividual variability is mediated by more basic attentional processes. 

Additionally, part of the relationship between hit RT SE and Tau may be due to method 

variance (discussed in detail below). The results of these analyses appear below in Table 

9.
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Table 9 

Results of Regression Analyses (Final Models)Testing the Relationship Between the ex-Gaussian Parameters and Cognitive 

Control (Controlling for Basic Attentional Processes) 

 μ  τ 

 R
2
 b β rpartial rsemi    R

2
 b β rpartial rsemi 

 .540       .465     

Age  .007 .486 .569 .470    .004 .236 .298 .228 

Stage One             

         Omissions  .001 .026 .037 .025    - - - - 

         Std. Error  - - - -    .015 .177 .223 .167 

Stage Two             

         WCST  .004 .266 .319 .228    .005 .308 .341 .266 

         TMT-B  .001 .235 .284 .201    .002 .278 .304 .234 

Note: μ = base10 logarithm of Mu parameter of ex-Gaussian distribution, τ = base10 logarithm of Tau parameter of ex-Gaussian distribution, R
2 
= multiple 

correlation coefficient, b = unstandardized regression coefficient, β = standardized regression coefficient, rpartial = partial correlation coefficient between 

criterion and predictor, rsemi = semipartial correlation coefficient between criterion and predictor, Omissions = CPT Omissions, Std. Error = CPT Hit RT 

Standard Error, WCST = WCST Perseverative Error Score, TMT-B = Trail Making Test B.  
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Regression Analyses of Hypothesis 4 

 Previous efforts have found significant relationships between intraindividual 

variability and abstract reasoning (Schmiedek et al., 2007). Hypothesis 4 tested this 

possibility through specifying a series of regression models that predicted the ex-

Gaussian parameters on the basis of total categories completed on the WCST, perhaps the 

most direct measure of abstract non-verbal problem solving on this rule based 

categorization task (Heaton et al., 1993). The models were constructed by entering age as 

a forced covariate in the first step, followed by categories completed. To evaluate the 

extent to which any observed relationships were influenced by basic attentional 

processes, analyses were re-run by including the CPT variables in the second block of the 

models with age and categories entered in the first and third blocks, respectively.  

 Computing Mahalanobis Distance and Cook’s Distance did not reveal the 

presence of any outliers for the primary tests of the relationship between the ex-Gaussian 

parameters and categories completed. Four outliers were identified on the basis of 

Mahalanobis Distance in the models controlling for stage one functioning, but they were 

not removed in order to allow direct comparisons between the models with and without 

these variables. Durbin-Watson values, which ranged from 1.924 (Mu) to 2.069 (Sigma), 

supported the assumption of independently distributed error terms. Normality of residual 

variance (assessed via Shapiro-Wilk tests of residuals) was tenable with the exception of 

Sigma (.793, p < .000) and Tau (.985, p < .000). For Tau, however, the corresponding 

Komolgorov-Smirnov value of .054 suggested that any violations of normality were quite 

modest (p = .200). Visual inspection of predicted vs. residual values revealed relative 
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homoscedasticity. Finally, there were no significant interaction effects in the final 

models.  

 Bivariate correlations between the CPT variables, age, and WCST categories 

completed were significant; however, they were generally low. Numerically, correlations 

ranged from r = -.210 (for categories and hit RT SE variability) to r = -.346 (for 

categories and hit RT SE). By standard conventions, these are negligible to small effects. 

As in other analyses, hit RT SE (a measure of choice RT variability) bore the highest 

relationship to higher order executive functioning (in this case WCST categories 

completed). These results suggest that the CPT variables may serve (at most) as partial 

mediators of the relationship between cognitive control and the RT parameters. These 

bivariate correlations appear below in table 10.  

Table 10 

Pearson Correlations Between Categories Completed Age, and CPT Variables 

 Age Omissions Hit RT SE Variability 

WCST -.214** -.314** -.346** -.210** 

Note: Omissions = CPT omission errors, Hit RT SE = CPT RT Standard Error, Variability = CPT hit RT 

Standard Error Variability, WCST = Wisconsin Card Sorting Test number of categories completed. 

** p < .01 

Both age and categories completed were significant predictors of response latency 

(F = 87.640, p < .000) and accounted for 49.2% of the variance in Mu. Increasing age 

and fewer categories completed resulted in greater response latency. As in other tests of 

Mu, age accounted for the greatest proportion of unique variance in the model (26.21%) 

followed by categories completed (12.82%). Controlling for stage one working memory 

(i.e., CPT omissions) had little effect on the overall model (R
2
 = 49.4) or the variance 

proportions. Overall, these findings suggest that mean response latency on the WCST is 
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related to abstract problem solving, and that this relationship is not mediated by more 

basic attentional processes.  

 Intraindividual variability was also related to higher order abstract reasoning. 

Both age and categories completed significantly predicted Tau in the final model (F = 

53.407, p < .000). As expected, older age and poorer performance on categories 

completed were associated with a higher level of inconsistency. The solution including 

these variables accounted for 37.1% of the variance in Tau, the majority of which was 

uniquely predicted by categories completed (22.28%). The semipartial correlation of age 

revealed that this variable uniquely predicted 7.56% of the variance in Tau. Controlling 

for the effects of stage one processing increased the predictive power of the total model 

(R
2
 = .419), reduced the unique contribution of categories completed to 14.14% of the 

variance, and increased the proportion of variance that was uniquely predicted by age to 

8.35%. In this final model, Omissions was the only significant stage-one variable (p < 

.000). Though hit RT SE achieved significance during the third stage of the model, it was 

rendered insignificant following the entry of omissions. These findings reveal partial 

mediation of the relationship between intraindividual variability and abstract reasoning 

by basic stage one attentional functions (consistent with predictions on the basis of 

theory; e.g., Christoff & Gabrielli, 2000; Owen, 2000). 

 In the final model, omissions was the only significant stage one variable. By 

contrast, hit RT SE was significant when testing mediation of cognitive control. This may 

be due to the inclusion of the 4 outlying cases that were eliminated in the latter analysis. 

This is of little practical significance, given that omissions and hit RT SE are nearly 

interchangeable as predictors of intraindividual variability (on the basis of their bivariate 
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correlations with Tau, reported above). Sigma was not significantly related to abstract 

non-verbal problem solving. The results of the final analyses (excluding the CPT 

variables) are featured in Table 11 below.
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Table 11 

Results of Regression Analyses (Final Models) Testing the Relationship Between the ex-Gaussian Parameters and Abstract Non-

Verbal Reasoning 

 μ   τ 

 R
2
 b β rpartial rsemi    R

2
 b β rpartial rsemi 

 .492        .371     

Age  .008 .524 .583 .512    .005 .282 .328 .275 

WCST  -.039 -.367 -.449 -.358    -.063 -.483 -.511 -.472 

Note: μ = base10 logarithm of Mu parameter of ex-Gaussian distribution, τ = base10 logarithm of Tau parameter of ex-Gaussian distribution, R
2 
= multiple 

correlation coefficient, b = unstandardized regression coefficient, β = standardized regression coefficient, rpartial = partial correlation between criterion and 

predictor, rsemi = semipartial correlation between criterion and predictor, WCST = WCST Categories Completed  
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Analysis of Task Specific Variables 

 In investigations of RT data, a variety of potential confounds must be ruled out 

before meaningful conclusions can be drawn. General slowing, levels of task 

engagement, unspecified task specific factors, and differences in response threshold all 

represent significant threats to inference in RT investigations. Analyzing specific task 

characteristics (e.g., accuracy) allows for conclusions about the plausibility of these 

scenarios. Bivariate correlations between the ex-Gaussian parameters, total number of 

correct responses, total number of incorrect responses, and accuracy on the WCST are 

reported below.  

Average task accuracy was 67%. By contrast, task accuracies typically exceed 

.90% on choice reaction time tasks and other similar measures frequently employed by 

variability researchers. This suggests that the WCST is much more difficult than similar 

other tasks used to study variability. Accuracy was negatively related to Mu (r = -.522, p 

< .000), Sigma (r = -.156, p = .034), and Tau (r = -.567, p < .000). Increased response 

latency, greater dispersion in the modal portion of the distribution, and greater variability 

resulted in a higher proportion of incorrect responses, which is expected given the results 

reported above. Slower, more variable individuals also sorted a greater number of cards 

incorrectly and a lower number of cards correctly. For total correct responses, bivariate 

correlations were small for Mu (r = -.332, p < .000 ), negligible for Tau (r = -.240, p < 

.000 ), and non-significant for Sigma (r = -.025, p = .737). For total errors, correlations 

were moderate for Mu (r = .503, p < .000 ) and Tau (r = .557, p < .000 ) and negligible 

for Sigma (r = .158, p = .032).   
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Power Analysis 

 The power analyses conducted during the design of this study are not reported. 

Post hoc power analyses, however, were conducted with G*Power 3.0 (Faul, Erdfelder, 

Lang, & Bruchner, 2007). The actual power of main regression equations was computed 

by submitting α levels, observed effect sizes, sample size, and the number of predictors to 

analysis with G*Power. Results of these computations indicate excellent power for nearly 

all analyses involving Mu and Tau. In hypothesis one, tests of the deviation of ρ
2
 from 

zero achieved an actual power of 1.0 for Mu and Tau. Due to the lower effect size, tests 

of Sigma achieved an actual power of .80, which meets the level recommended by Cohen 

(1988). Tests of R
2
 increase (i.e., testing the power to detect whether terms should be 

added to the model) achieved a power of 1.0 for tests of Mu and Tau and .75 for Sigma.  

 The hypothesis two analyses were powerful for Mu and Tau, with tests of the 

deviation of ρ
2
 from 0 achieving an actual power of 1.0. Due to the very small effect size 

(f
2
 = 0.01) tests of the deviation of ρ

2
 from 0 were underpowered for Sigma (1-β= .17). 

Tests of R
2
 increase achieved an actual power of 1.0 for Mu, .99 for Tau, and .15 for 

Sigma. For analyses of hypothesis three, tests were powerful despite the presence of a 

greater number of predictors. The actual power achieved was 1.0 for Mu and Tau when 

testing the deviation of ρ
2
 from 0 as well as R

2
 increase. Sigma was not investigated 

under hypothesis three.  

Tests of hypothesis 4 were similarly powerful with evaluation of deviation of ρ
2
 

from 0 and R
2
 increase both achieving a power of 1.0 for Mu and Tau. Tests of Sigma 

achieved a power of .50 for deviation of ρ
2
 from 0 and R

2
 increase. The mediating 
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analyses for Mu and Tau included the CPT variables achieved power of 1.0 for testing the 

deviation of ρ
2
 from 0 and R

2
 increase. Sigma was not investigated in mediating analysis. 

Overall, these data indicate that the majority of analyses achieved power that 

substantially exceeded Cohen’s (1988) recommendation of .80 for confidence in the 

experimental design. Achieving greater power during tests of Sigma would have required 

a prohibitively large sample due to the small observed effect sizes.  
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CHAPTER 5 

DISCUSSION 

Summary and Review 

 Intraindividual variability refers to individual changes that occur across trials, 

measurement occasions, or tasks. Such variability may represent enduring functional 

adaptations that enhance the ability of an organism to interact functionally with the 

environment (i.e., developing; Li et al., 2004). Alternatively, it may represent fluctuation 

around an asymptote of optimal performance in the face of challenges or inability to 

sustain an ongoing stream of adaptive behavior (functioning). Researchers have used 

individual differences in maladaptive forms of variability to predict impending death 

(Shipley, Der, Taylor, & Deary, 2006), improve the accuracy of dementia diagnosis 

(Holtzer et al., 2008), and differentiate clinical populations from normal controls (Leth-

Steensen et al., 2000). In the setting of response time research, fluctuation in performance 

across trials serves as a harbinger of deficiency, as it predicts impairment on 

neuropsychological measures before it is evident in mean levels of performance (Lövdén 

et al., 2007).  

There is now a significant body of evidence revealing that the integrity of various 

prefrontal cortical regions is necessary for performance consistency. Studies of focal 

brain lesions (Stuss et al., 2003), dementia subtypes (Murtha et al., 2002), functional 

neuroimaging (Bellgrove et al, 2004), structural neuroimaging (Bunce et al., 2004; Bunce 

et al., 2007), and genetic determinants (Stefanis et al., 2005) all converge on this 

interpretation. The literature suggests that variability may be a sensitive, novel measure 
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of executive control processes. Unfortunately, the scientific study of variability has had 

little impact on the mainstream practice of clinical neuropsychology.  

The primary goal of this investigation is to bridge this gap through ascertaining 

the extent to which trial-to-trial variability in response time is related to cognitive control 

and higher order executive abilities, thereby establishing its convergent validity with 

other more traditional neuropsychological assessment techniques. This effort stands to 

contribute to our existing knowledge in several capacities. First, this study is one of a few 

to provide convergent evidence that intraindividual variability on commonly used 

assessment measures is related to other clinical tasks of executive functioning. Second, it 

is the first study to use a battery of cognitive control tests whose neuroanatomical basis 

has been clarified by the results of a large scale cortical lesion mapping study (Gläscher 

et al., 2012) and several decades of functional neuroimaging research, thereby allowing 

the explicit relation of findings to dominant neuroanatomical theories of working 

memory and executive functioning (Christoff & Gabrielli, 2001; Owen, 2000; Petrides, 

1995). Third, it is one of a few studies to investigate intraindividual variability in a 

heterogeneous clinical population. Finally, it is the only study (to the author’s 

knowledge) to examine intraindividual response time variability on the Wisconsin Card 

Sorting Task.  

Four primary hypotheses were investigated during the course of this project. First, 

greater levels of intraindividual variability will be associated with lower levels of 

performance on cognitive control tests. Second, increased attentional control will predict 

lower levels of intraindividual variability. Third, basic attentional abilities will partially 

mediate the relationship between cognitive control and intraindividual variability. Fourth, 
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intraindividual variability will be related to higher-order aspects of executive functioning, 

such as abstract reasoning.  

The following discussion section considers each of these hypotheses in detail 

through exploration of the study results and linking the findings to neuroanatomical data 

and theory about the higherarchical organization of the prefrontal cortex. Main findings 

are reviewed and alternative explanations are examined before a discussion of the 

theoretical and neuroanatomical significance of the findings. These sections primarily 

highlight the strengths of the study. Detailed consideration of methodological and 

statistical limitations follows. Next, suggestions for future research are offered. The 

project concludes with a brief statement about the implications of this investigation for 

the practice of clinical neuropsychology. 

Review and Interpretation of Significant Results 

In this study, the primary research hypotheses were supported. Intraindividual 

variability on the WCST was significantly related to cognitive control (as well as simple 

attention) and individual differences in basic attentional ability partially mediated this 

relationship. Intraindividual variability also appeared to be related to non-verbal problem 

solving, a higher-order aspect of executive functioning. Both statistical and visual 

analyses were consistent with these interpretations. Importantly, visual analyses were 

conducted with demographically corrected t-scores, which revealed that these significant 

results do not simply reflect the contribution of uncontrolled demographic variance. 

Demographically corrected t-scores were not used in the regression analyses because 

published normative data for the ex-Gaussian parameters is not available. Thus, utilizing 
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demographically corrected scores would have effectively removed the effects of age and 

education from the predictor variables but not the criterion variables.  

With respect to the first study hypothesis, lower levels of performance on the 

cognitive control tests predicted increased intraindividual variability. TMT-B and 

perseverative error score emerged as the best (and only) significant predictors of 

variability after controlling for age. Interpretation of the correlation between Tau and 

perseverative errors must be tempered somewhat, however, due to the fact that both 

indices were derived from the WCST.  The potential presence of content similarity might 

bias estimates of their true correlation. This possibility is examined in more detail below 

in the section on alternative explanations.  

By Cohen’s (1988) standards, the size of the overall regression effect predicting 

Tau was large (f
2
 = .821) and the vast majority of unique variance in the model was 

predicted by the cognitive control tests (as opposed to age).Together, perseverative errors 

and TMT-B accounted for 30.3% of the variance in intraindividual variability. The effect 

size for the regression equation predicting Mu on the basis of cognitive control was even 

larger (f
2
 = 1.22). For response latency however, the cognitive control tests contributed 

somewhat more modestly (18.1% combined) and age accounted for a greater portion 

unique variance in the model (21.7%). In comparing and contrasting the relative portions 

of variance for the models of Mu vs. Tau, one must bear in mind that the average 

correlation between these two parameters was r = -.51 (partially due to parameter 

depenencies). Thus, the methodology employed does not allow for definitive statements 

about precise variance portions. Nevertheless, cognitive control predicted nearly twice 
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the variance in Tau that it did in Mu, a finding that is consistent with previous 

investigations.  

The use of commonality coefficients, which allow researchers to partition the 

portions of a regression effect that can be exclusively attributed to each predictor and 

each combination of predictors (Nimon, 2010) further clarifies these findings. The 

combined unique and common effects of the cognitive control variables accounted for 

67.11% of the variance in the final regression model predicting Tau (γTMT-B = .1064, 

γWCST = .0631, γTMT-BxWCST = .1338; 30.3% of the overall variance in Tau). By contrast, 

these tests accounted for only 33.12% of the variance in the effect for Mu (γTMT-B = 

.0460, γWCST = .0536, γTMT-BxWCST = .0803; 18.1% of the overall variance in Mu). These 

findings reveal that the majority of variance in the regression for Mu reflects the 

contribution of age, which is expected on the basis of theory. Numerous investigations 

support the notion that general slowing is responsible for age related changes in response 

times (e.g., Myserson, Hale, Wagstaff, Poon & Smith, 1990; Zheng, Myserson, & Hale, 

2000). In sum, both intraindividual variability and response latency are meaningfully 

related to executive tests measuring attentional set shifting; response latency, however, is 

is more significantly related to age.  

An  interaction effect emerged during tests of hypothesis one. Specifically, the 

relationship between intraindividual variability and the cognitive control tasks varied as a 

function of test performance (Figure 4). For a given neurocognitive test, its positive 

association with intraindividual variability decreased in strength with increasing levels of 

impairment on the other cognitive test. In the case of individuals with the poorest 

performance on TMT-B, the relationship between intraindividual variability and 
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perseverative errors actually reversed. In other words, individuals who performed poorly 

on either cognitive task might or might not have performed poorly on the other task; they 

were all more variable. The significance of these correlations was not investigated 

statistically due to sample size restrictions. 

The importance of this finding is unclear as it may be due to several factors. First, 

because all individuals with poor performance on either cognitive task were considerably 

more variable than their unimpaired counterparts, a restriction of range may have 

ocurred, thus making this interaction effect less meaningful. If this were the case, the 

change in strength and direction of the relationship between variability and the cognitive 

control tasks would be a statistical artifact. Second, individuals who were impaired on 

TMT-B may have engaged in a more consistent but still comparatively ineffective 

response strategy on the WCST, accounting for the negative relationship between 

perseverative errors and intraindividual variability at impaired levels of performance on 

the TMT. This is less likely, however. The numerous findings reported above suggest that 

variability accompanies lower levels of skill across the spectrum of performance on the 

cognitive control measures.  

The third and perhaps most interesting interpretation is that intraindividual 

variability may reflect deficiency in a general underlying neural substrate, making it 

sensitive to impairment yet not highly specific. This cross-task factor could account for 

impairment on either TMT-B or perseverative errors before a level of disability sufficient 

to impair performance on both tasks was reached. Other work attests to the fact that 

individuals may become more variable before impairment is evident in their mean level 

of performance (Lövden et al., 2007), which is consistent with this conceptualization.  
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In this scenario, TMT-B and perseverative errors would be more specific 

measures, which would account for the finding that some individuals who were impaired 

on one test were not impaired on the other. Variability would be reflective of a more 

general process, thus explaining why individuals who performed poorly on either task 

were more inconsistent. Previous investigations have found that RT variability reflects 

both the severity of cognitive impairment and the specific nature of the neurological 

disturbance (Burton et al., 2006), which is consistent with this possibility. Investigation 

of the extent to which variability on the WCST represents specific vs. general impairment 

(as well as sensitivity/specificity data for the detection of impairment) might be a fruitful 

area for future research.  

Hypothesis two was also supported, as variability was related to more basic 

attentional functions measured by the CPT variables. Specifically, Tau was predicted by  

hit RT SE (a prototypical measure of RT variability). This performance index accounted 

for 10.24% of the variance in Tau and the overall effect size for the regression equation 

(predicting Tau on the basis of age and hit RT SE) was medium by Cohen’s (1988) 

standards (f
2
 = .328). It is worth mentioning that omissions indexed nearly the same 

portion of unique variance, as it accounted for 8.64% of Tau after rebuilding the 

regression equation with this measure in place of hit RT SE. The fact that hit RT SE was 

included in the final model instead of omissions may reflect the atheoretical stepwise 

variable entry procedure that was employed (rather than theoretically significant 

differences). Mu was also related to the CPT variables, but they accounted for a 

miniscule portion of variance in this parameter.  
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 Methodologically, this finding demonstrates that trial-to-trial variability on the 

WCST is related to trial-to-trial variability on Go/No-go tests such as the CPT. Other 

research has documented minimal differences in variability across an assortment of 

relatively distinctive RT tasks (Burton et al., 2006) in certain populations, which supports 

the notion that it is a “trait-like” individual difference. For example, those who are more 

variable on one occasion are likely to be more variable on subsequent measurement 

occasions (Hultsch et al., 2000).  In the present study, variability on one measurement 

occasion (on the WCST) predicted variability during another measurement occasion (on 

the CPT) within the same testing session. These results support the findings of Burton et 

al. (2006) and Hultsch et al. (2000). The correlation between Tau and hit RT SE is also 

consistent with the interpretation that variability (as measured by the Tau parameter) is, 

in part, analogous to intraindividual variability indexed by more traditional methods such 

as the iSD. 

 There is an important caveat to this finding, as both CPT hit RT SE and Tau may 

share method variance, given that they are both measures of trial-to-trail response time 

variability. This variance might include peripheral, non-cognitive contributions that could 

spuriously inflate the observed magnitude of the relationship between Tau and CPT hit 

RT SE. Despite some similarity, however, the instructions for the two tasks are 

significantly different. Whereas individuals are instructed to respond as quickly and 

accurately as possible during the CPT, they are instructed to sort the cards to the best of 

their ability without regard to time on the WCST. Moreover, researchers have found that 

measures of intraindividual RT variability correlate poorly with other measures of simple 

motor functioning (e.g., tapping speed; de Frias et al., 2007) and that group differences in 
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cognitive functioning are more predictive of intraindividual variability than are 

differences in peripheral motor abilities (Hultsch et al., 2000). Thus, the results may not 

be overly biased by similarity between the two tasks.  

 A substantial proportion of WCST RT variability was not explained by the CPT 

variables, which may be due to a number of factors. First, methodological differences in 

the way intraindividual variability was indexed between the WCST (i.e., Tau parameter) 

and CPT (i.e., iSD of log-transformed RT distribution) undoubtedly contribute to the lack 

of correspondence between these measures. To the author’s knowledge, there are no 

previous reports of the extent to which Tau parameters and iSDs converge and as such, 

speculations about the significance of this methodological disparity would be reduced to 

conjecture. Quantifying the consistency between these different techniques is important 

to examine in future research. Second, as a measure of abstract non-verbal problem 

solving, the WCST imposes considerably greater executive and cognitive control 

demands on the examinee as compared to the CPT. This substantive difference might 

easily give rise to different patterns of variability. Researchers have found that previously 

significant effects may be rendered insignificant when they are investigated using 

functionally different intraindividual variability paradigms (Christensen et al., 2005). 

Nevertheless, the present findings add to the growing body of evidence that 

intraindividual variability on different tasks is both related to and distinct from 

intraindividual variability on other procedures.  

 At the level of theory, the CPT variables in this study are conceptualized as 

operationalizations of more basic attentional functions that are likely to reflect first-order 

working memory processes (Petrides, 1995; Christoff & Gabrielli, 2001). First-order 
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functions are those that maintain rules involving a small number of concrete item 

properties (Badre, 2005). For example, decisions about the color of a stimulus, the 

identity of a letter, or judgments about the occurrence or non-occurrence of a stimulus. 

The VMPFC appears to be the neuroanatomical basis for first-order cognitive control 

operations (Christoff & Gabrielli, 2000; Owen, 2000). This brain region is also associated 

with the orienting response, a “subprocess signaling the active orientation of attention 

towards potentially significant events” (Williams et al., 2000, p. 3011). Orienting is 

indexed by omissions on the CPT (Conners, 2000). 

 This level of executive functioning (i.e., first-order processes) has served as the 

basis of interpretation in previous studies of the relationship between Tau and higher-

order cognitive abilities (e.g., Balota, Cortese, Sergeant-Marshall, Spieler, & Yap, 2004; 

Geurts et al., 2008; Rentrop et al., 2010; Tse et al., 2010; West et al., 2002; Leth-Steensen 

et al., 2000). Researchers have frequently made use of an attentional control framework 

to attribute their significant findings to lapses of intention (West et al., 2002), lapses of 

attention (Rentrop et al., 2010), or changes in the efficiency of attentional control systems 

(Tse et al., 2010).  

The findings under hypothesis 2 are consistent with these previous results, yet the 

fact that basic attentional functioning (indexed by the CPT variables) did not account for 

the vast majority of the relationship between cognitive control and response time 

variability is not. Furthermore, intraindividual variability was only modestly related to 

Omissions (r = .363), a direct measure of failure to orient/attentional lapses. The complex 

nature of the tasks employed means that these results provide only a weak challenge to 

previous, more parsimonious attributions of increased RT variability to simple attentional 
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functions. Still, it is significant that a prototypical task of vigilance and attentional 

functioning failed to predict a greater portion of the variance in Tau.  

 Hypothesis 3 directly tested the possibility that differences in simple attentional 

abilities were sufficient to explain the observed relations between intraindividual 

variability and higher order executive functions. Controlling for first-order functioning 

(indexed by CPT hit RT SE) significantly affected the observed relationship between 

cognitive control and Tau. As expected, this relationship was reduced but it was not 

eliminated. With the effects of first-order functioning controlled, TMT-B and 

perseverative errors continued to account for 21.8% of the variance in intraindividual 

variability. By contrast, they accounted for 30.3% unique variance when hit RT SE was 

left out of the model. Thus, in this investigation basic (i.e., first-order) executive 

processes serve no more than a modest mediating function. This finding is particularly 

significant considering the fact that the CPT is not, strictly speaking, a pure measure of 

first-order functioning.  

Despite the CPTs failure to mediate the majority of shared variance between Tau 

and the cognitive control tasks, it did make an appreciable contribution to the prediction 

of Tau in its own right. Hit RT SE predicted 10.2% of the variance in Tau during tests of 

hypothesis 2 and mediated 8.5% of the variance that was formerly attributable to the 

cognitive control tests during tests of hypothesis 3. An analysis of the cognitive skills 

required by the CPT sheds light on the abilities that these findings may reflect. 

 The CPT involves demands such as judging whether a given letter matches an X, 

conflict monitoring during incorrect trials, updating the contents of working memory as 

the test progresses, and inhibition on No-go trials, all of which represent more higher 
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order cognitive skills (Riccio et al, 2002). Indices directly measuring conflict trials (e.g., 

commissions) were omitted from these analyses in order to minimize the extent to which 

results were confounded by these other demands. Still, the CPT is considerably more 

involved than many procedures used to index first-order executive processes. This may 

be the reason that neuroimaging studies demonstrate engagement of the dorsomedial PFC 

and caudal PFC in addition to the VLPFC during inhibition trials of Go/No-go tasks such 

as the CPT (Ridderinkhof, van den Wildenberg, Segalowitz, & Carter, 2004). Depth-

electrode recordings in non-human primates show that inhibition trials are accompanied 

by firing of cells in the principle sulcus (the monkey homologue of DLPFC, Brodmann’s 

area 46; Sakagami, Tsutsui, Lauwereyns, Koizumi, Kobayashi, & Hikosaka, 2001). For 

Conners’ CPT specifically, neuroimaging data reveals widespread activation of various 

portions of the PFC thought to reflect second-order aspects of executive functioning in 

addition to VMPFC (Ogg et al., 2008). The CPT is thus likely to be partially confounded 

with higher-order aspects of cognitive control, making analyses controlling for CPT 

performance only partially reflective of the differential contributions of first order vs. 

second order executive functions.  

Finally, in tests of hypothesis 4, intraindividual variability was related to abstract 

reasoning, a putative third-order frontopolar executive ability (Christoff & Gabrielli, 

2000; Owen, 2000; Petrides, 1995). The overall effect size for this analysis was large (f2 

= .589) and categories uniquely predicted 22.28% of the variance in Tau controlling for 

age. This contribution was reduced to 14.14% after controlling for first-stage functioning 

(CPT Omissions). Response latency was also related to abstract reasoning and the effect 

size for this overall regression effect was also large (f2 = .969). In the latency models, 
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categories accounted for 12.82% of the unique variance in Mu. Controlling for first-order 

functioning (i.e., omissions) did not significantly reduce its contribution. The relationship 

between Tau and abstract reasoning is expected on the basis of previous literature. The 

findings with respect to Mu are also in line with the results of previous studies. In their 

analysis of ex-Gaussian parameters, Schmiedek and colleagues (2007) found r = .38 

between a latent Mu variable and latent reasoning construct, but Mu was not a unique 

significant predictor in the setting of the other ex-Gaussian parameters. This possibility 

was not investigated in this study.  

In summation then, intraindividual variability was related to cognitive control; 

specifically, tasks requiring set shifting. It was also related to more basic (primarily) first-

order executive functions (indexed by the CPT). Tau and Mu were associated with 

abstract non-verbal problem solving, a purportedly higher-order rostral executive ability. 

In tests of mediation, first-order processes served no more than a moderate mediating 

function of the relationship between intraindividual variability and the higher-order 

cognitive skills. This suggests that intraindividual variability is related to specific aspects 

of higher order executive cognition and that this relationship is not explained by simple 

lapses of attention or basic fluctuations in attentional control.  

Evaluation of Alternative Explanations 

In RT research, it is important to examine more parsimonious 

methodological/statistical explanations of significant findings before making statements 

about the relations between RT parameters and higher order aspects of cognition. This 

section considers alternative explanations in detail and assesses their plausibility. 

Specifically, the results may be caused by at least four alternative factors.  
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First, the findings could simply be the by products of general slowing. If 

individuals with lower levels of cognitive control are generally slower, then they are 

more likely to occasionally produce extremely slow responses that would increase Tau 

values and account for the significant effects. Slowing is expected to effect all RTs 

equally. Consequently, the RT distributions of participants with low levels of cognitive 

control would simply reflect a linear transformation of the distributions of participants 

with high levels of cognitive control. Such a linear transformation would uniformally 

effect all three ex-Gaussian parameters (Schmiedek et al., 2007) and cognitive control 

would be an equally good predictor of Mu, Sigma, and Tau. The fact that Mu and Tau 

were the only parameters robustly related to TMT-B, perseverative errors, and categories 

provides clear evidence against such an interpretation. Although Sigma was significantly 

related to perseverative errors, this cognitive control test predicted only a minute portion 

of this parameter.  

Another way to test whether the results are due to general slowing is to construct 

Q-Q plots of the RT distributions for individuals with high vs. low levels of cognitive 

control (Myerson, Adams, Hale, & Jenkins, 2003). The resulting regression line modeling 

the relationship between the quantiles of the two groups can be interpreted as an indicator 

of the extent to which they are simply linear transformations of one another. Nonlinear 

relationships between the quantiles attest to differential RT distribution shape as a 

function of group membership and are inconsistent with a general slowing interpretation.   

To carry out these analyses, participants were ranked in order of their 

performance (on the basis of demographically corrected t - scores) on the cognitive 

control tests. High and low cognitive control were defined as the upper and lower 



124 

 

 

quartiles of performance for each of the assessment tasks. Quantiles were calculated for 

each participant individually and then averaged (within groups), to form a set of mean 

quantile points for each group and each cognitive test. Nonlinearity was evaluated using 

hierarchical regression with a linear effect entered during the first step of the models and 

a quadratic effect entered during the second step. The quadratic trends were significant 

for each of the cognitive control variables, with p = .002 for TMT-B, p = 0.001 for 

perseverative errors, p = .007 for the COWAT, and p < .000 for the Stroop test. These 

data reveal that RT differences between individuals with high vs. low performance on the 

cognitive control tasks are not the results of a linear tranformation and consequently, that 

general slowing does not account for the findings of this study.  

Second, individuals with lower levels of cognitive control might be more cautious 

during responding due to difficulty with the task, making their responses slower and 

increasing the possibility that they would have a longer response. In this case, Tau would 

be positively related to accuracy because a more conservative response threshold is 

expected to increase performance (Ratcliff, 1978). Tau, however, was negatively related 

to task accuracy (r = -.567, p < .000), revealing that differences in response threshold do 

not explain the observed findings.  

Speed accuracy tradeoffs are a related possibility that is important to consider. It 

may be the case that some individuals simply rushed through the WCST, which might 

adversely affect their performance and render significant results more reflective of task 

engagement than underlying levels of neurocognitive skill. This possibility was guarded 

against before any analyses took place, by excluding individuals with a higher number of 

responses to the “other” category (which suggests failure to adequately understand the 
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task or random responding). Furthermore, the analyses of Mu reveal that individuals who 

were faster on the WCST actually performed better on the cognitive control tasks, which 

rules out the possibility of a speed/accuracy trade off.  

Third, variability was compared to performance indices on the task from which it 

was derived (i.e., the Wisconsin Card Sorting Test). As a result, there is a certain level of 

content similarity between Tau, WCST perseverative errors, and WCST categories. Some 

task-specific non-executive source of variance shared by these measures might be 

responsible for the observed relationships. That is, some individuals might simply have 

had difficulty with the Wisconsin Card Sorting Test for whatever reason. This could 

result in slower, more variable responding and lower levels of performance during this 

task that might explain the findings above. Although content similarity cannot be 

definitively ruled out, several findings suggest that it cannot independently account for 

the results reported above.  

The fact that variability was meaningfully related to all of the cognitive control 

variables during tests of bivariate correlations (reported in Table 3) is inconsistent with 

the effects of content similarity. Furthermore, intraindividual variability on the WCST 

was also related to more classical variability measures (such as CPT hit RT SE) and these 

measures were, in turn, related to the cognitive control variables. There is thus a 

convergence of evidence across multiple measures and multiple measurement modalities 

suggesting that the relationship between intraindividual variability and cognitive control 

is a meaningful finding that must be explained.  
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Theoretical and Neuroanatomical Significance of Findings 

The purpose for examining the relationship between Tau, basic attention, 

cognitive control, and abstract reasoning was to permit statements about how variability 

may relate to the rostro-caudal organization of the prefrontal cortex. The extent to which 

the higher-order relationships investigated in hypothesis one and four (i.e., cognitive 

control vs. reasoning) are differentiable, however, remains open to debate. Abstract 

reasoning was indexed by only one variable (categories) that in turn was highly 

correlated with a cognitive control task (perseverative errors), making the determination 

of differential contributions impossible under this study’s analytic constraints. Thus, the 

relationship between Tau and abstract reasoning may simply reflect individual 

differences in cognitive control. As a result, the interpretation below primarily focuses on 

the relationship between Tau and the cognitive control variables.  

Within a more general framework, comparing the simple (primarily first-order) 

executive functions indexed by the CPT variables to more complex functions (indexed by 

cognitive control and reasoning tasks) is informative and guides the interpretation of 

significant results below. This general distinction may be more reflective of the current 

state of our current knowledge about the hierarchical organization of the PFC. The 

preponderance of rostro-caudal theories agree that progressively anterior regions of the 

frontal cortex support increasingly complex abstract representations and processes, 

regardless of their specifics (Badre, 2008). 

What might account for the findings of this investigation? At the level of task 

demands, both perseverative errors (Heaton et al., 1993) and TMT-B (Arbuthnott & 

Frank, 2000) may be construed as measures of attentional set shifting or cognitive 
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flexibility. This executive cognitive skill involves the flexible deployment of attentional 

resources, allowing individuals to switch between competing sets of cognitive operations. 

Within clinical neuropsychology, conceptualizations of set shifting have focused on the 

disengagement of an irrelevant task set and subsequent active engagement of a relevant 

task set (Miyake et al., 2000). Performing a new cognitive operation may also require one 

to overcome negative priming (i.e., proactive interference) from having previously 

executed a particular cognitive operation on the same stimulus set (Waszak, Hommel, & 

Allport, 2003). From this perspective, significant relations between intraindividual 

variability and the shifting tasks may indicate that variability reflects the control of 

attention, active engagement of response sets, and the ability to suppress irrelevant 

information in the pursuit of a self-selected goal. 

Differences between the two cognitive control tasks are important to consider in 

further elucidating these results. TMT-B and perseverative errors are distinct in that the 

former requires shifting between visual stimuli while the latter is more prototypically 

executive (i.e., it requires intentional switching between internally generated sorting 

rules). Functionally different areas of the cortex are thought to subserve the shifting of 

visual attention vs. more executively oriented shifts, such as the conscious direction of 

attention on the basis of task instructions (Posner & Raichle, 1997). There is evidence 

from neuroimaging, however, that significant commonality exists between different types 

of shifting tasks regardless of whether they involve external visual material or more 

traditionally executive material. In addition to parietal and occipital regions, various 

anterior frontal regions appear to be activated during a variety of different shifting 

paradigms (Wager, Jonides, & Reading, 2004). This neural activation is in turn related to 
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regions subserving executive cognitive skills that have been associated with 

intraindividual variability. For example, there is “a striking degree of overlap between 

attention shifting-related regions and regions shown to be selectively responsive to 

executive processes in working memory” (Wager et al., 2004, p. 1690). The fact that Tau 

was significantly related to set shifting tests in this study is thus highly consistent with 

previous findings that it predicts working memory task performance with impressive 

effect sizes (Schmiedek et al., 2007; Tse et al., 2010).  

Further evidence comes from a study of cortical lesion mapping, which provides 

causal evidence of the brain regions that underly various components of cognitive 

control. In this study, Gläscher and colleagues (2012) found that performance on both 

TMT-B and perseverative errors (purified of non-executive task demands) was related to 

directly overlapping regions of the left Anterior Cingulate Cortex (ACC). As these 

authors explain, this area is uniquely situated between frontal networks thought to 

representationally subserve valuation and cognitive control. The valuation and control 

networks have their neuroanatomical basis in areas of the dorsolateral and ventral PFC 

(Gläscher et al., 2012), which in turn, are related to second and first order working 

memory processes (respectively; Owen, 2000).  

Taken together, these findings suggest that intraindividual variability on the 

Wisconsin Card Sorting Test may reflect fluctuations in the control of various working 

memory subprocesses involved in set-shifting, and that variability may have a 

neuroanatomical basis in portions of the ACC and frontal attention networks involving 

the VMPFC and DLPFC. Previous neuroimaging data found intraindividual variability in 

response time to be associated with activations of Brodmann’s area 9 and 46 (Bellgrove 
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et al., 2004), both regions of the dorsolateral prefrontal cortex associated with working 

memory, cognitive control, and the control of attention (Banich, 2009).  

There has been a surge of interest in the function of the ACC in recent years, with 

discussions centering around three key features of this structure as it effects behavioral 

control: the role of the ACC in motor control, the role of the ACC in cognition, and the 

importance of arousal/drive state for ACC engagement (Paus, 2001). 

Neuropsychologically, the rostral ACC has been related to uninstructed set-shifting and 

error detection (Braver, Barch, Grey, Molfese, & Snyder, 2001; Lie, Specht, Marshall, & 

Fink, 2006). The specific areas associated with TMT-B and WCST performance in 

Gläscher and colleagues’ (2012) lesion mapping study appear to lie within the 

proisocortical region (Brodmann’s area 24, 25) and the paracingulate gyrus (area 32). 

They encompass both subcallosal and supracallosal areas of the ACC. Interestingly, these 

areas are not traditionally associated with motor functions. The density of cortico-cortical 

connections of the lateral PFC with supracallosal areas 24 and 32 suggests that this 

particular region of the ACC may be involved in the functions of this structure that relate 

to cognition (Paus, 2001). In his influential and widely cited article, Paus (2001) 

attributes the primary function of the ACC as the willed control of behavior. Thus, 

intraindividual variability may reflect less efficient control mechanisms involved in the 

coordination of affective, cognitive, and motor information in the pursuit of intentionally 

selected goals.  

The ACC is thought to integrate information from cognitive, affective, and motor 

channels with the help of ascending striatal dopaminergic neurons (Rushworth & 

Behrens, 2008). Alterations in dopaminergic neuromotransmission have been 
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documented in populations that also demonstrate increased RT variability, including 

patients with schizophrenia, children with ADHD, the elderly, and patient’s with 

Parkinson’s disease (MacDonald et al., 2009). Lower D2 receptor binding in the ACC 

appears to be systematically linked to intraindividual variability on both memory and 

executive functioning tasks as assessed by a PET-derived in vivo marker of D2 binding 

potential (MacDonald, Cervenka, Farde, Nyberg, & Bäckman, 2009). Additionally, 

neurocomputational models suggest that “DA dysregulation alters the signal-to-noise 

ratio of neural information processing, impairing neurons’ sensitivity to afferent signals, 

leading to less distinct cortical representations, and ultimately resulting in increasing 

intraindividual variability and impaired cognitive functioning” (Macdonald et al., 2009, 

p. 801). These data are consistent with the results of this investigation, in that they 

suggest that performance consistency is dependent upon neuromodulatory and 

neurostructural substrates that are also related to cognitive control (particularly those 

abilities subserved by the rostral ACC). 

An additional perspective is obtained by interpreting these results in the context of 

task difficulty. Within this framework, greater intraindividual variability in response time 

reflects the increased difficulty encountered by participants with low levels of cognitive 

control as they attempted the Wisconsin Card Sorting Task. It is already well established 

that more executively challenging tasks effect greater variability in normal populations 

(West et al., 2002). Task difficulty is also the most important factor for effecting 

increasing ACC activity in functional neuroimaging studies (Paus, 2001). Might lower 

levels of cognitive control increase the relative task difficulty of the WCST in the same 
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way, thus leading to greater variability? If this were the case, variability might represent 

an additional dimension of performance on the WCST that could be utilized clinically.  

In an ingenious experiment examining the architecture of cognitive control in the 

human prefrontal cortex, Koechlin, Ody, and Kouneiher (2003) discovered that mean 

reaction time increases significantly and in a cumulative fashion with the addition of 

increased executive demands. To grossly simplify their results, increasing response time 

was accompanied by greater activation of lateral prefrontal cortical regions (including 

Brodmann’s area 46). RT latency and activations of area 46 were greatest for the most 

episodically (i.e., executively) demanding block of the experiment and were not 

explained by increases in motor demands or working memory load.  

Koechlin and colleagues (2003) did not explicitly examine the response time data 

produced by their experimental design, but the linear relationship between the mean and 

standard deviation of RT distributions (Wagenmakers & Brown, 2007) suggests that if 

they had, they might have also discovered increased RT variability. Accordingly, lower 

levels of executive reserve or the presence of impairment might effect greater response 

time latency and variability in clinical populations in the same way that increased 

executive task demands effect variability in normal populations. This possibility is 

intriguing because the greater resolution of response time measures (as compared to 

traditional assessment techniques) suggests that they might be more sensitive 

performance indices. Variability might thus represent an additional dimension of 

measurement, one that is easily extracted from commonly used computerized 

neuropsychological tasks but is (at present) largely neglected in clinical practice.  



132 

 

 

Limitations of This Investigation 

 The conclusions that can be drawn from this study are subject to several 

important limitations. These weaknesses are considered below as they relate to statistical, 

methodological, and practical limitations of the project.  

At the level of statistics, this study (like all studies of ex-Gaussian parameters that 

do not employ structural equation modeling) is subject to the problem of parameter 

dependency. Implementation of the fitting routines in QMPE introduces correlated 

deviations of parameter estimates from their true values. These correlated error terms 

then serve as unwanted variance that confounds subsequent analyses of the ex-Gaussian 

parameters. Cousineau et al. (2004) discuss this problem in detail as it pertains to QMPE. 

The average intercorrelations of the ex-Gaussian parameters were previously reported in 

Table 3 in the interest of transparency with respect to this statistical issue.  

The functional form of the fitting routines utilized by QMPE dictates that 

parameter dependencies are positive for Mu and Sigma, negative for Mu and Tau, and 

negative for Sigma and Tau. In this study, the intercorrelations of Mu and Sigma (r = .61) 

and Mu and Tau (r = -0.51) were particularly high. The fact that Mu and Sigma were the 

most highly correlated, yet Sigma largely failed to relate meaningfully to the predictor 

variables that Mu related to, suggests that the effects of dependencies were not 

catastrophic to the analyses conducted. Furthermore, Mu and Tau were negatively 

correlated with one another but their correlations with the other predictor variables were 

universally in the same direction. Thus, correlated error introduced by the parameter 

estimation process is unlikely to have overly influenced the study results. If anything, it is 

possible that such dependencies represented systematic “error” that decreased the degree 
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of association between Mu, Tau, and the predictor variables. If idealized Mu and Tau 

variables both correlated in the expected direction with the various behavioral indicators 

and their dependencies were negative, this would serve to decrease their association with 

the neuropsychological tasks. Nevertheless, the methodology employed here does not 

permit completely unambiguous statements about the relative contributions of the ex-

Gaussian parameters.  

A related issue concerns the reliability and variability of parameter estimates. 

These are also reported in Table 3. Specifically, reduced variability of Sigma relative to 

Mu and Tau may have disadvantaged this parameter in the correlational and regression 

analyses. The substantial positive skew of Sigma (which could not be eliminated via the 

use of data transformations) also translated to numerous violations of statistical 

assumptions. These violations could have increased or decreased Sigma’s relationship 

with the various cognitive tasks. Such circumstances may be the norm in most published 

journal articles that do not provide sufficient data to evaluate the extent to which their 

analyses violated underlying assumptions; as such, they may not be overly concerning. 

With these caveats, the findings of this study with respect to Sigma are consistent with 

previous investigations, as this parameter has only been infrequently related to 

meaningful constructs.  

Decreased reliability of Tau vs. Mu may be a more important issue, given that 

these parameters demonstrated similar magnitudes of relationship to theoretically 

meaningful variables in certain scenarios (e.g., tests of hypothesis 4). The standard error 

of Tau was nearly twice that of Mu, which is expected to attenuate its correlations with 

the various predictor variables. This may be the reason why the overall variance in Tau 
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associated with the cognitive control tasks was lower than in previous investigations 

using SEM, which is capable of measuring potentially more reliable latent Tau constructs 

that are devoid of measurement error.  

This study made extensive use of atheoretical stepwise variable entry to form the 

regression equations used in hypothesis tests. This methodological decision was made in 

the setting of insufficient prior research to determine the expected order of variables a 

priori. Bivariate correlations between all the variables analyzed in this study are reported 

in order to allow the reader to come to their own conclusion about their relative 

importance, regardless of whether they appeared in the final regression models. The 

decision to use stepwise entry had its largest impact in Tests of hypothesis 1, as the 

Stroop test and COWAT were not included in final models despite their significant 

bivariate correlations with Mu and Tau. Unreported analyses testing various 

combinations of predictor variables through forced entry (conducted after tests of primary 

study hypotheses) suggest that the results of hypothesis 1 would have generally been the 

same even if the variables were entered in a different order.  

Significant overlap between the predictor variables suggests that the use of SEM 

to form latent first-order and second-order executive factors might have been preferable 

to the regression-based approaches employed herein. This possibility was considered and 

abandoned due to sample size limitations, practical limitations, and the more stringent 

data requirements for this methodology. Certain theories modeling the rostro-caudal 

organization of the PFC have been tested and validated using SEM (e.g., hierarchy based 

on relational complexity, Christoff & Gabrielli, 2000; the cascade-control model; 
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Koechlin et al., 2003) and it would be intriguing to see how variability relates to a 

measurement model of PFC organization.  

Methodologically speaking, this study employed a series of highly complex 

neuropsychological tasks that are commonly utilized in clinical practice. These tasks all 

contain multiple demands and do not permit the type of fine-grained dissociation of 

component processes necessary for definitive statements about the relationship of 

intraindividual variability to precisely specified executive task demands. Such an analysis 

would be useful to inform theory. The purpose of this project, however, is to establish the 

clinical importance of variability in the context of theory, rather than to primarily 

investigate or advance a theory. For this reason, links to neuroanatomical substrates and 

theories of frontal lobe functioning are offered tentatively rather than definitively. Future 

efforts should use experimental designs capable of disentangling the relative 

contributions of different executive sub-processes to response time consistency.  

Perhaps most importantly, nearly half the variance in Tau was not successfully 

modeled by any combination of variables. The implication being that this measure of 

intraindividual variability may reflect many systematic sources of underlying variability 

that are unrelated to executive cognitive skills. The effect sizes for the overall regression 

equations predicting Tau were generally large, however. Previous investigation have 

reported higher correlations between Tau and latent working memory constructs (i.e., r = 

-.72, Schmiedek et al, 2010; r = -.90, Tse et al. 2010). Using statistical methodology that 

permitted more precise quantification of Tau (absent parameter dependencies and error 

variance) could have possibly reproduced similar results.   
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Recommendations for Future Research 

 This study adds to a growing body of evidence that suggests variability research 

may be directly applicable to clinical assessment. Previous results have demonstrated that 

RT variability data can predict and precede impairment before it is evident in mean levels 

of performance (Lövden et al., 2007), contribute incrementally to diagnostic decisions 

(Holtzer et al., 2008; Hultsch et al., 2000), and achieve greater sensitivity than more 

commonly employed measures of mean RT (Leth-Steensen et al., 2000). To establish 

intraindividual variability measures as useful neuropsychological tools, future research 

might examine which measures of RT variability would be most effectively developed 

for clinical use. It is likely that certain tasks are best suited to particular populations or 

assessment questions, the specifics of which could be clarified by studies simultaneously 

testing a variety of methods in broad clinical samples. Select publications provide 

preliminary evidence that the diagnostic utility of variability measures is partially 

dependent upon the task paradigm from which they are derived (de Frias et al., 2007).  

 It will also be important to demonstrate the extent to which intraindividual 

variability contributes meaningfully to the diagnostic process. Previous work indicates 

that variability data may increase the accuracy of classification in the setting of dementia 

(Dixon et al., 2007; Holtzer et al., 2008) and ADHD (Leth-Steensen et al., 2000). 

Establishing the sensitivity and specificity of intraindividual variability measures for the 

detection of different forms of neuropathology is an important area for future research.  

 The interaction effect uncovered during tests of hypothesis 1 raises the possibility 

that variability might differentially relate to underlying neurocognitive skills as a function 

of impairment level. Clarifying this possibility by evaluating variability at different levels 
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of cognitive performance might elucidate those contexts in which it would be most 

effecitvely utilized. For example, variability measures might prove to be a sensitive 

indicator of impending impairment that would be ideal in a screening context or for the 

detection of mild cognitive impairment (e.g., Lövden et al., 2007).  

 Theoretically, this study is the first to explicitly relate its findings to theories of 

rostro-caudal prefrontal cortical organization. The results suggest that intraindividual 

variability measures may be differentially related to functionally and neuroanatomically 

dissociable stages of executive functioning. Researchers might explicitly test this 

hypothesis through the use of carefully designed experimental paradigms capable of 

measuring various executive subprocesses in conjunction with RT variability. Such 

investigations could provide valuable data about how variability relates to the rostro-

caudal organization of the prefrontal cortex. Combined with latent variability constructs 

(measured by structural equation modeling), such experiments might make definitive 

statements about the relationship between performance consistency and various 

subprocesses of cognitive control and executive functioning.  

 Finally, a great deal of previous intraindividual variability studies have focused on 

the use of intraindividual standard deviations, the coefficient of variation, or other 

summary statistics. These less sophisticated techniques appear to be sub-optimal to the 

use of ex-Gaussian parameters for measuring RT variability (particularly in the context of 

structural equation modeling). Nevertheless, many significant previous findings rely 

primarily on the use of these statistics. Exploring the extent to which ex-Gaussian 

parameters converge with these more traditional measurements could link previous 

findings with contemporary efforts that employ distribution fitting.   
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Implications for the Practice of Clinical Neuropsychology 

To effectively utilize an assessment measure in the clinical context, 

neuropsychologists must have detailed knowledge about its reliability and validity. 

Previous efforts suggest that intraindividual variability in response time is substantial in 

magnitude (Nesselroade & Salthouse, 2004) and can be reliably measured (Hertzog, 

Dixon, & Hultsch, 1992). The results of this study demonstrate that it also enjoys 

convergent validity with commonly employed measures of executive functioning. 

Bivariate correlations of the ex-Gaussian parameter Tau with a battery of cognitive 

control tasks were marginally higher than the intercorrelations of the tasks themselves in 

a broad clinical sample. By these standards, variability seems to be at least as deserving 

of space in neuropsychological test batteries as these more traditional assessment 

methods.  

Tests of primary hypotheses revealed that variability is more reflective of 

cognitive control abilities (as they are typically defined by practicing neuropsychologists) 

than simple attentional abilities. Moreover, the relationship between intraindividual 

variability and cognitive control was only partially mediated by more basic attentional 

skill. The results also provide preliminary evidence that variability may be related to 

putative “third stage” fronto-polar executive functions, such as abstract reasoning. 

Variability thus appears to be a potentially viable measure that might differentially index 

various partially dissociable facets of executive functioning. 

The executive functions represent a complicated set of interrelated cognitive skills 

that allow individuals to meaningfully pursue external goals on the basis of internally and 

externally generated information (Badre et al., 2005; Miyake et al., 2000). Three 
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executive functions have been frequently hypothesized in the neuropsychological 

literature: set shifting, information updating/monitoring, and inhibition. Intraindividual 

variability in response time on the WCST appears to be specifically related to tests of set-

shifting.  

The WCST is the most commonly utilized clinical test of executive functioning 

(Heaton et al., 1993) and current evidence supports the notion that performance on this 

task is differentially affected by DLPFC lesions (Stuss & Levine, 2003). TMT-B is 

another measure widely thought to be affected by DLPFC damage. In this study, 

perseverative error score from the WCST and time to completion on TMT-B predicted 

intraindividual variability on the WCST with a large effect size (f
2
 = .821). This 

combination of cognitive tests accounted for 30.3% of the variance in intraindividual 

variability on the WCST after controlling for age. These data are consistent with the 

interpretation that RT variability on the WCST reflects the active control of attention, 

engagement of response sets, and the ability to suppress task irrelevant information in the 

pursuit of a self-selected goal. 

Some previous work by Stuss and colleagues (2003) provides lesion data that 

intraindividual variability seems to be causally related to DLPFC damage and the results 

of neuroimaging converge on this interpretation (e.g., Bellgrove et al., 2004). 

Intraindividual variability was selectively related to measures thought to index DLPFC 

functioning in this study. Combined with the results of previous investigations, these  

findings suggest that intraindividual variability may represent the efficiency or stability 

with which individuals are able to regulate various working memory subprocesses whose 
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neuroanatomical basis corresponds to frontal executive attention networks including the 

DLPFC, VLPFC, and ACC in addition to other non-frontal areas.  

Further research is necessary before clinicians can confidently incorporate novel 

RT variability measures into their clinical batteries. Specifically, efforts utilizing full 

neuropsychological batteries in conjunction with variability measurements might help to 

clarify the construct validity of intraindividual variability in the clinical setting. Work 

examining patterns of variability across different tasks in distinct clinical subpopulations 

might add to our existing knowledge of how variability relates to underlying CNS 

pathology. Continued use of functional neuroimaging, cortical-lesion mapping, and lesion 

study methods may set the stage for a new clinical measurement tradition based on the 

application of intraindividual variability data.  
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