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 This study examined the predictive relationship of a brief computation measure 

administered in the fall, winter, and spring of first, second, and third grade with the mathematic 

portion of a state-mandated academic achievement test administered in the spring of third grade.  

The relationship between mathematical achievement and resource availability and sex was also 

explored.   

 Multiple linear regression analysis and Pearson correlations indicate the brief 

computation measure from the winter of first grade through the spring of third grade has a strong 

predictive relationship with mathematical achievement on the state-mandated academic 

achievement test administered in the spring of third grade.  The brief computation measure in the 

fall of first grade had a moderate predictive relationship with outcomes on the state-mandated 

math assessment in third grade.  Sex was not found to be an adequate predictor variable.  

Resource available was a weak predictor of mathematical outcomes, but became more relevant in 

third grade. 
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CHAPTER I 

INTRODUCTION 

 Over recent years, the accountability of educational institutions and practices has been 

pushed into the limelight.  There is a significant gap between the national standards for 

mathematical proficiency and how students are performing in actuality (Kelley, 2008).  The 2001 

reauthorization of No Child Left Behind (NCLB) increased pressure on schools to have 100% of 

students performing proficiently on state standards measured by performance on state-generated 

academic achievement tests in addition to achieving Adequate Yearly Progress (AYP).  AYP is 

measured by several factors (e.g., attendance) but most significantly achievement.  School 

performance on state assessments is linked directly to federal education funding at the state level 

(Braden & Schroeder, 2004).  The end-of-the-year state assessments required by NCLB are 

considered high stakes testing due to the potentially serious implications these tests may have on 

school systems (Bell, Taylor, McCallum, Coles, & Hays, 2015; Braden & Schroeder, 2004).  

Recent legislative changes, specifically the December 2015 signing of the Every Student 

Succeeds Act (ESSA), seek to lessen the negative ramifications of high stakes testing.  However, 

it is yet unknown how these changes will impact the current educational climate and culture 

(White House Office of the Press Secretary, 2015). 

As educators question and reflect on how to improve educational practices, problem-

solving models, which have long been supported in the medical field, have gained increased 

attention and support (Sansosti & Noltemeyer, 2008).  The 2004 reauthorization of the 

Individuals with Disabilities Education Improvement Act (IDEIA) and ESSA requires use of 

periodic standardized assessments to inform curriculum implementation and school 

improvement.  This legislation encourages schools to adopt a problem-solving approach to 
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meeting the needs of all students (Glover & DiPerna, 2007).  The recognition that education 

systems in the United States were not meeting the academic, social, and behavioral needs of all 

students coupled with this legislation prompted school systems to more readily adopt tiered 

instruction systems that embraced problem-solving approaches.  Most common are the three-

tiered versions of Response to Intervention (RTI) and Positive Behavior Support (PBS).   

 In the most basic sense, RTI is defined as the change in behavior or performance as a 

function of intervention (Gresham, 2002).  RTI systems require ongoing evaluation of student 

response to instruction and intervention (Daly, Martens, Barnett, Witt, & Olson, 2007).  In an 

RTI model, eligibility and decisions regarding educational programming are made based on a 

student’s response to an intervention that is matched to skill deficits, is research-based, and is 

implemented with integrity.  RTI models are supported by legislation, and research prioritizes 

the need for an effective core curriculum and early identification of students in need of additional 

instruction or intervention.  Despite the increasing prevalence of RTI implementation, there are 

limited regulations on how to specifically implement RTI.  Therefore, RTI models vary 

significantly from state to state and school district to school district.  A three-tiered model is the 

most prevalent in both practice and research, with the intensity of assessment and intervention 

increasing at each tier. 

RTI is frequently thought of as a special education initiative because IDEIA supports its 

use to identify students as having a specific learning disability (Walker & Shinn, 2010).  In 

actuality, many educational systems are implementing tiered intervention models but not as a 

means of identifying students for special education services.  These systems, instead, view RTI 

as a service-delivery model in which universal instruction is improved so that very few students 

require tiered supports.  Additionally, assessments are regularly administered to identify 
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emerging skill deficits and provide remedial support in an efficient manner.  Communities, 

education systems, families, and students see the benefit of RTI systems in literacy education and 

would like to reap the benefits in all academic areas and behavior as well.  However, there is 

limited research regarding best practices of RTI implementation in math in comparison to the 

body of research available in reading (Clarke, Doabler, & Nelson, 2014).  Within recent years, 

more attention has been given to implementation of problem solving models in mathematics and 

behavior.  The behavior and social/emotional needs of a system is commonly addressed through 

PBS. 

 PBS is a global term used to describe an approach for addressing behavior to improve 

quality of life and decrease maladaptive behaviors that impact functioning.  The definition of 

PBS has changed significantly and rapidly since its emergence in the mid-1980s.  PBS has most 

recently been defined as: 

An approach to behavior support that includes an ongoing process of research-based 

assessment, intervention, and data-based decision making focused on building social and 

other functional competencies, creating supportive contexts, and preventing the 

occurrence of problem behaviors.  PBS relies on strategies that are respectful of a 

person’s dignity and overall well-being and that are drawn primarily from behavioral, 

educational, and social sciences, although other evidence-based procedures may be 

incorporated.  PBS may be applied within a multi-tiered framework at the level of the 

individual and at the level of larger systems (e.g., families, classrooms, schools, social 

service programs, and facilities).  (Kincaid et al., 2016, p. 71) 

Based on this broad definition, PBS can range significantly in intensity and implementation.  

PBS can be intensive behavioral plans applied to an individual after completion of a functional 
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behavioral assessment to behavior approaches implemented across an entire system to prevent 

mild to moderate behavioral problems from emerging.  School-wide positive behavior support 

(SWPBS) or positive behavioral interventions and supports (PBIS) are terms used to describe 

PBS when applied to entire educational systems.  SWPBS is typically used when referring to the 

multi-tiered systems implemented in kindergarten through twelfth grade education systems 

(Kincaid et al., 2016).  SWPBS focus on creating a safe learning environment for students by 

providing social and behavioral instruction to promote desired social and behavioral outcomes.  

Cornerstone features of successful SWPBS systems are embedding evidence-based practices, 

responsive changes to discipline practices, data-driven decision making, and maintenance of 

these practices over time (Frey, Lingo, & Nelson, 2010).   

 Both RTI and SWPBS utilize a multi-tiered method of service delivery.  However, the 

language used to define these systems does not fully encompass their inclusive nature.  As a 

result, RTI is often thought of as an academic, assessment-based system (Stoiber, 2014) whereas 

SWPBS is behavior-centric.  Attempting to implement two separate, multi-tiered systems 

simultaneously places undue stress on schools and often results in ineffective systems.   

Multi-Tiered Systems of Support (MTSS) combines the function of RTI and SWPBS into 

one dynamic system responsive to the needs of all students.  It is important to note that many 

scholarly works and published text continue to refer to comprehensive multi-tiered service 

delivery models as RTI or SWPBS.  There is a gradual shift, however, toward use of MTSS as a 

more general term to describe these systems to decrease the misconception that problem-solving 

models are solely a method of identifying students for special education services or are unique to 

academic or behavioral concerns.  For the sake of clarity in this dissertation, MTSS will be used 
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to describe any multi-tiered service delivery model.  RTI will be used to describe the process of 

identifying students for special education services within MTSS models.    

MTSS models aim to improve student outcomes in academics and social/emotional 

development.  Reported benefits of a MTSS model include a significant reduction of students 

being referred to and qualifying for special education programs, a decrease in office discipline 

referrals, and, with each year of implementation, an increase in the number of students 

demonstrating proficiency on state assessments (Lillenstein, Fritschmann, & Moran, 2012; 

Michigan Department of Education, 2012; Stoiber, 2014).   

 MTSS models of service delivery emphasize high-quality core instruction provided to all 

students.  Educators rely on evidence-based practices to differentiate instruction for students and 

facilitate a positive learning environment (Stoiber, 2014).  Supplemental instruction and 

intervention are provided in the areas of reading, writing, mathematics, and behavior with 

increasing intensity based on student need.  The intensity of the intervention should be matched 

with the severity of student need.  Students are able to receive appropriate levels of support in a 

time-efficient manner, with or without a special education label.  While there are variations 

within MTSS models, most states have adopted a three-tier approach, with intensity of 

instruction increasing at each tier.  Tier 1 is the foundation of the education system.  Essential 

features of Tier 1 include high quality instruction, appropriate differentiation of instruction, 

alignment with state standards of essential learning, and universal screening.  Tier 2 incorporates 

targeted instruction and intervention for students who have been identified as needing additional 

academic, social, or behavior support in addition to high quality instruction provided through 

Tier 1.  Tier 3 is intensive, individualized intervention for a small percentage of students (1-5%) 

who have not made adequate progress when provided support at Tiers 1 and 2 intensity levels.  
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Tier 3 services are provided in addition to those at Tier 1 and Tier 2 (Albers & Kettler, 2014; 

Stoiber, 2014).  

 The National Association of School Psychologists (NASP) outlines six key features of 

successful MTSS systems: (a) differentiated instruction within a high quality core curriculum, 

(b) universal screening, assessment, and monitoring progress; (c) focus on prevention and 

intervention, (d) fidelity of interventions, (e) evidence-based practices,  and (f) professional 

development (Cowan, Vaillancourt, Rossen, & Pollitt, 2013; Stoiber, 2014).  Universal 

screenings are one of the key components of MTSS systems, and the focus of the present study.  

 Universal screening is defined as “the systematic assessment of all children within a 

given class, grade, school building, or school district, on academic and/or social emotional 

indicators that the school personnel and community have agreed are important” (Ikeda, Neessen, 

& Witt, 2008, p. 103).  The use of universal screening is supported in federal and state education 

legislation.  The 2004 reauthorization of the IDEIA and NCLB required the use of periodic 

standardized assessments to inform curriculum implementation and school improvement (Glover 

& DiPerna, 2007).  While ESSA seeks to minimize the amount of time students are spent 

engaged in standardized testing, it continues to require periodic standardized testing of students.  

Additionally, ESSA has allowed several states to pilot use of local assessments to evaluate 

student outcomes and teacher effectiveness in place of a statewide assessment (National 

Education Association, 2015).   

Universal screenings are generally administered to all students three times a year to 

access critical academic skills (Gerzel-Short & Wilkins, 2009).  Universal screening data are 

used for three essential functions.  Primarily, universal screening data are used to identify 

students who may need remediation or enrichment and acceleration.  Classroom teachers are 
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encouraged to use universal screening data, in conjunction with other assessment data, teacher 

observations, and work samples, as a resource when grouping students for differentiated 

instruction (Parisi, Ihlo, & Glover, 2014).  Secondly, universal screening data are used to 

calculate local normative data and evaluate student growth over time.  The third essential 

function of universal screening is to evaluate core curriculum and effectiveness of school 

systems.   

 When making decisions about universal screenings, educational systems need to consider 

(a) what general outcome measures to be assessed, (b) the use of a broadband or narrowband 

screening tool, (c) who will be assessed, and (d) whether or not to employ a gated evaluation 

system (Albers & Kettler, 2014).  District and school teams should reflect on these issues before 

making a decision about the screener(s) to be used, lest an inefficient screener is implemented. 

General outcome measures represent the curricular content or specific skills students are 

expected to learn which represent global learning outcomes.  General outcome measures utilize 

standardized administration procedures and “produce critical indicators of student performance” 

(Fuchs & Deno, 1991, p. 493).  General outcome measures can represent a sampling of skills 

directly linked to a curriculum.  A second approach to general outcome measurement is to assess 

global skills that require students to apply knowledge they would be expected to master by the 

end of the school year or indicators of growth (e.g., oral reading fluency; Foegen & Deno, 2001).  

Both approaches to general outcome measurement can use broadband or narrowband screening 

instruments.  Broadband instruments assess multiple skills simultaneously (e.g., concept and 

application probes), whereas narrowband instruments assess a specific area of functioning (e.g., 

number identification; DiPerna, Bailey, & Anthony, 2014).   
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 Decision-makers within education systems also need to determine who will be assessed 

and how frequently.  Typically, universal screening is completed three times a year with all 

students, in the fall, winter, and spring.  Alternatively, a gated evaluation system may be 

employed instead of traditional universal screening methods.  Gated evaluation is the process of 

“involving multiple assessments that cost efficiently identify a subset of individuals from a larger 

pool of target participants with a combination of methods and measures generally arranged in 

sequential order” (Walker, Small, Severson, Seeley, & Feil, 2014, p. 47).  In such a gated 

system, for example, all students may complete a simple, broadband screener.  A small 

proportion of those students, as identified on the initial broadband screener, are gated into the 

next stage of screening.  In this next stage of the gated system, the small number of students 

complete a narrowband assessment.  Such gated assessment practices are more common in PBIS 

(Walker et al., 2014), and increasingly recommended in MTSS models. 

 The practice of universally screening students to provide early intervention for academic 

and behavior concerns is more common at the early elementary level than at the secondary level.  

This is in part due to the significance of early intervention to remediate learning and behavioral 

challenges.  Duncan et al. (2007) found a strong relationship between early learning and later 

academic outcomes in mathematics, further highlighting the need for research to support 

effective identification of mathematical deficits. 

 Examination of universal screening logistics is an important consideration for school 

teams.  Equally important, however, is consideration of the quality of the screening instrument 

used.  The reliability and validity of an instrument are primary indicators of their quality.  

Reliability indicates the accuracy and consistency of a measure, or how close an observed score 

is to a true score (DiPerna et al., 2014).  Validity is the “extent to which a score on a measure 
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represents the construct of interest” (DiPerna et al., 2004, p. 234).  For a universal screening 

instrument to be effective, it needs to measure what it is purported to measure.  In other words, 

universal screening instruments need to be reliable and correlate with a future learning outcome 

or have strong validity.   

 Tier 1 instruction of an MTSS model should be aligned with state standards and utilize 

data from state assessment measures to evaluate and ensure high quality instruction for all 

students.  One of the crucial requirements of universal screeners is to be reflective of the 

curriculum so schools can use data to evaluate core instruction.  Hence, the need for universal 

screening tools in primary grades that have a strong correlation with later outcomes on state 

assessments.  Universal screeners do not act as global indicators of the effectiveness of an 

educational system unless they are aligned with the curriculum.  Universal screening measures 

are described as “essentially worthless” (Ikeda et al., 2008, p. 103) when they are not reflective 

of the curriculum or robust indicators of student success.  Conversely, universal screening 

instruments that reflect the curriculum or are robust indicators of student success provide an 

efficient, effective, and cost-effective means to evaluate how well a system is meeting the needs 

of all students and identifying students who may be in need of additional intervention.   

 Many academic, social, and behavioral problems can be addressed within the core 

curriculum and regular education setting through an early, proactive approach (Elliott, Haui, & 

Roach, 2007; Stoiber, 2014).  Many initial decisions regarding student intervention are based on 

universal screening data within MTSS service delivery models, highlighting the need for valid 

and reliable universal screening instruments. 

 As described earlier, reliability is the accuracy and consistency of an instrument to 

measure a person’s true score.  Methods of measuring reliability include internal consistency, 
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test re-test reliability, and interrater reliability.  Each of these reliability methods addresses 

different aspects of reliability and should be used in combination with each other (DiPerna et al., 

2014).  Moderate to strong reliability is necessary for academic universal screening instruments 

because data from instruments need to be consistent and stable over time to accurately conclude 

difference in scores are due to differences among students or systems, not inconsistencies with 

the screening instrument.  Reliability is also thought to be a prerequisite for validity.  An 

instrument is unlikely to demonstrate adequate validity if it is not reliable (Christ & Nelson, 

2014). 

 Universal screening measures should demonstrate moderate to strong validity.  Validity 

can be measured in terms of content-related, construct-related, and criterion-related.  This study 

focuses on the criterion or predictive validity of a math computation measure.   

Predictive validity is the extent to which an instrument is able to predict a future 

outcome, and this indicator of technical adequacy forms the basis of the overall purpose of this 

study.  Specifically, predictive validity measures how strong the relationship is between the 

universal screening instrument and a future learning outcome or criterion measure (Christ & 

Nelson, 2014; DiPerna et al., 2014).  In this case, the state-mandated academic achievement test 

is used as the criterion measure because it represents a set of skills students are expected to 

master by the end of third grade.  It is essential that universal screening instruments have strong 

predictive validity to identify and intervene with students who may be at risk for future learning 

difficulties in an early and proactive manner.  Predictive validity of universal screening 

instruments generates four possible outcomes described as classification accuracy. 

Education systems should consider classification accuracy and decision rules when 

choosing and employing universal screening measures.  Classification accuracy, one indicator of 
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technical adequacy, refers to an instrument’s likelihood of correctly identifying students in need 

of additional intervention (true positive), correctly identifying students who are not in need of 

additional intervention (true negative), incorrectly identifying students as being in need of 

intervention (false positive), or failing to identify students in need of intervention (false 

negative).  Sensitivity and specificity are calculated based on the four classification accuracy 

features of a screening instrument.  Sensitivity is the percentage of true positives detected by a 

test.  Specificity accounts for the percentage of true negatives detected by a test (Christ & 

Nelson, 2014; VanDerHeyden, 2011).  Sensitivity and specificity are used to establish 

appropriate cut-off scores for a screening tool by determining at what score point is a student 

likely, or not, to reach future learning outcomes while minimizing the likelihood of over- or 

under-identifying students as being in need of additional interventions.  These cut-off scores are 

then used within decision-making rules regarding providing students with the appropriate 

intensity of instruction (Parisi et al., 2014).  Universal screening tools should demonstrate good 

technical adequacy to increase the likelihood of true positives and true negatives and decrease 

instances of false positives and false negatives.  In basic terms, instruments that have been 

designed and validated for universal screening help to identify the appropriate students for tiered 

supports while minimizing inaccurate predictions of which students may or may not need those 

tiered supports.   

 There is a plethora of information regarding screening and intervention in the area of 

reading; however, there is significantly less research to provide educators direction in the area of 

mathematics (Clarke, Haymond, & Gersten, 2014; Methe, 2009).  As multi-tiered models of 

service delivery continue to grow in popularity and implementation, it is vital that research-based 

practices are also applied to the area of mathematics (Gersten et al., 2012; VanDerHeyden, 
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2010).  Research exploring the technical adequacy of universal screeners is especially critical 

within a MTSS model because multiple assessment instruments are used to make educational 

decisions with more frequency than in the traditional discrepancy model (VanDerHeyden, 2011).  

Typically, this is done by correlating one instrument with another instrument previously shown 

to measure the same construct or with some meaningful outcome, including end-of-the year tests, 

referred to as the outcome criterion (VanDerHeyden, 2010).   

 Curriculum-based measures (CBM) have shown to be appropriate universal screening 

instruments assuming they demonstrate sufficient reliability and validity evidence, measure 

constructs that are meaningful and reflective of the school curriculum, and are developed using 

universal design.  Universal design refers to the ability of an assessment instruments to be 

sensitive to the characteristics of all potential test takers.  Instruments with universal design 

typically have clearly identified constructs; bias-free content; been formatted to be accessible to 

all students; allow for accommodations; simple, clear administration and scoring procedures; 

appropriate readability; and legibility of text and graphics (Anderson et al., 2011).  CBM math 

probes are relatively easy to score; cost effective; can typically be group administered; and can 

be used for subsequent progress monitoring (Albers & Kettler, 2014; Clarke et al., 2014; Howell 

& Hosp, 2014).  CBM are standardized and have been shown to have moderate to strong 

predictive accuracy and validity (Clarke et al., 2014).    

CBM have also been shown to have outcome utility, another criterial factor when 

evaluating universal screening instruments.  Outcome utility is the ease at which (a) a system, 

teachers, administrators, and parents can understand the implications of the screening data; (b) 

the data are useful in guiding instruction/intervention; and (c) the data are able to have a positive 

impact on student outcomes (Glover & Albers, 2007).  The technical adequacy and outcome 
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utility of universal screening instruments are often based on how well the data generated can 

predict future outcomes for students (i.e., their predictive power).  This is done by correlating 

screening data with a future outcome, such as demonstrating proficient performance on a 

standardized test of academic achievement.  This future outcome is referred to as the predicted 

criterion or outcome criterion.  The lack of consistent predictor criteria when validating these 

instruments and unknown classification agreement have been identified as areas in need of more 

research (Gersten et al., 2012; VanDerHeyden 2010).  This study focuses on determining the 

predictive power of a math computation probe administered in first, second, and third grade with 

the state assessment given in the spring of third grade.  The Pennsylvania System of State 

Assessment (PSSA) serves as the predictor criterion in this study.   

Mathematics achievement is measured by the math composite score on the PSSA 

mathematics assessment, in addition to scores on the five subtests that yield a composite score.  

The state assessment reflects Pennsylvania Common Core learning outcomes, therefore, the 

content assessed has been deemed valuable by Pennsylvania’s state department of education.  

Mathematics achievement is divided into five subtests, established by the PSSA: Numbers and 

Operations, Measurement, Geometry, Algebraic Concepts, and Data Analysis and Probability.  

Numbers and Operations is a subtest of the PSSA-Math (PSSA-M) in which students 

demonstrate an understanding of numbers, ways of representing numbers, relationships among 

numbers and number systems, meanings of operations, understanding and application of 

operations and how they relate to each other, the ability to compute accurately and fluently, and 

the capacity to make reasonable estimates.  The Measurement subtest assesses understanding of 

measureable attributes of objects and figures, and the units, systems and processes of 

measurement.  Students are also required to apply appropriate techniques, tools and formulas to 
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determine measurements.  This subtest includes calculation of time and elapsed time, length, 

area, volume and weight of objects, and use of a ruler.  Geometry is a subtest of the PSSA-M 

which measures a student’s ability to analyze characteristics and properties of two and three 

dimensional geometric shapes.  The Geometry subtest also requires students to “demonstrate 

understanding of geometric relationships and identify and/or apply concepts of transformations 

or symmetry” (Data Recognition Corporation, 2014, p. B-2).  Algebraic Concepts is a subtest of 

PSSA-M which measures a student’s ability to “demonstrate an understanding of patterns, 

relations, and functions and represent and/or analyze mathematical situations using numbers, 

symbols, words, tables and/or graphs” (Data Recognition Corporation, 2014, p. B-2).  The Data 

Analysis and Probability subtest of PSSA-M requires students to formulate or answer questions 

that can be addressed with data and/or organize, display, interpret or analyze data (Data 

Recognition Corporation, 2014). 

Statement of the Problem 

Research on mathematical learning trajectories indicates that students who demonstrate 

math skills within the bottom 10th percentile in kindergarten have a 70% likelihood of remaining 

below the 10th percentile five years later when in fifth grade (Martin et al., 2012; Morgan, 

Farkas, & Wu, 2009, 2011).  Educational practice should emphasize a preventative, proactive 

approach to potential math difficulties given the stability of learning trajectories over time.  

However, there is limited consensus about what constitutes well-developed universal screening 

instruments to support the early identification of students who would benefit from additional 

math intervention.  Glover and Albers (2007) identified several key requirements of universal 

screening tools.  Universal screening instruments need to reflect the standards of importance to 

the education system, be based on universal design, demonstrate technical adequacy, and have 
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outcome utility.  Minimal research has been conducted to determine the predictive validity of 

universal screening instruments in mathematics with high-stakes testing, such as state-mandated 

tests of academic achievement.  The limited availability of validated measures of a system’s 

effectiveness and individual student performance is problematic when systems are striving to 

provide high quality mathematics instruction to all students and be proactive in remediation of 

potential mathematics deficits.   

The purpose of this study is to further the research about what instruments may constitute 

effective universal screeners in mathematics.  To that end, contemporary research indicates that 

there are two potentially significant factors outside of the purview of educational systems which 

may affect mathematical outcomes.  There is a growing body of research that indicates students 

living in low socio-economic status (SES) homes are likely to demonstrate difficulty with 

mathematical learning, and these deficits are more persistent when compared to students who are 

not living in poverty.  These findings suggest students living in low SES homes many benefit 

significantly from early, intensive math intervention (Reardon, 2013).   

There is a mixed body of research on whether or not sex has an impact on mathematical 

learning outcomes.  Some research indicates a significant difference in mathematical learning 

between males and females, but other research disputes an achievement gap between males and 

females (McGraw et al., 2006; Stoet & Geary, 2013).  Therefore, this study also explores what, if 

any, impact SES and sex have on predicting mathematical outcomes. 

As the world becomes more focused and reliant on technology, the quality of our science, 

technology, engineering, and mathematics (STEM) education becomes increasingly important 

for the United States to remain competitive in a global economy (The President’s Council of 

Advisors on Science and Technology [PCAST], 2011).  According to a 2011 report produced by 
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The President’s Council of Advisors on Science and Technology (PCAST), the United States is 

lagging significantly behind other nations in STEM education at the elementary and secondary 

level.  According to the National Assessment of Educational Progress (NAEP), a significant 

number of children from low-income homes do not reach basic levels of mathematical 

proficiency and are under-represented in STEM related professions (NAEP, U.S. Department of 

Education, 2015).  These findings support the need for further research regarding the impact of 

SES on the development of mathematical skills.  SES is included in this study to determine if it 

is a predictive factor of performance on PSSA-M unrelated to performance on a universal 

screener in mathematics.   

Women are also under-represented in the field of STEM.  The increased percentage of 

women entering the workforce with higher education and advanced degrees observed in other 

fields of study is not reflected in STEM fields (National Science Foundation, 2015; U.S. 

Department of Education, 2012).  Some hypothesize this is due to sex-differences in 

mathematical learning, with men outperforming females on mathematical achievement tests 

(McGraw, Lubienski, & Strutchens 2006).  However, there is mixed research on whether a 

significant difference exists between male and female mathematical achievement (Else-Quest, 

Hyde, & Linn, 2010).  McGraw, at al. 2006 reviewed the United States National Assessment of 

Educational Progress (NAEP) data from 1990 to 2003 and found a small but statistically 

significant difference in mathematical achievement between male and female mathematical 

achievement across multiple years.  Other research, contrarily, has not indicated statistically 

significant differences in mathematical performance between males and females (Else-Quest et 

al., 2010; Hyde, Fennema, Ryan, Frost, & Hopp, 1990; Scheiber, Reynolds, Halovsky, & 

Kaufman, 2015).  Due to conflicting findings regarding a mathematical achievement gap coupled 
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with an under-representation of females in STEM related fields, sex is studied as a potential 

predictive factor on PSSA-M achievement.   

MTSS models function on the principle of adjusting instruction and intervention based on 

responsiveness to the needs of systems and individual students, including students who 

historically perform poorly in mathematics.  The dynamic nature of MTSS models require 

education systems and educators to be responsive to student and community needs.  Universal 

screenings are the first step when determining which students may be at risk of academic, social, 

or emotional deficits (Albers & Kettler, 2014).  Students who are identified early for potential 

deficiencies can receive supplemental intervention at varying degrees of intensity to limit the 

future impact of these difficulties (Albers & Kettler, 2014; Kettler, Glover, Albers, & Feeney-

Kettler, 2014).  After an extensive analysis of mathematics instruction studies, Slavin and Lake 

(2008) highlighted the importance of adult responsiveness when young children are developing 

mathematical skills.  To support responsiveness, there is a need to assess children’s mathematical 

skills to promote learning (Salvin & Lake, 2008); however, this is problematic given the 

complexity of mathematical development and relative dearth of research in mathematics 

instruction and assessment (Fisher, Dobbs-Oats, Doctoroff, & Arnold, 2012; Murphy, Mazzocco, 

Hanich, & Early, 2007; Methe, 2009).     

Within MTSS service delivery models, the use of gated evaluation procedures are 

becoming more prevalent to reduce unnecessary strain on schools’ financial and personnel 

resources by reducing the number of false positives (Albers & Kettler, 2014; Fuchs et al, 2011; 

VanDerHeyden, 2010).  Gated evaluation systems, also referred to as multiple-gate models or 

Smart RTI, involve a series of evaluations to an increasingly smaller number of students to 

ensure the students who are being identified as being at risk of an academic, social, and/or 
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emotional difficulties are truly in need of intervention.  The number of evaluation gates is 

determined by the educational system; however, three gate systems are prevalent in current 

practice.  Data utilized in gated evaluation systems can include parent and teacher input, direct 

observation, and review of work samples in addition to direct assessment.  These systems also 

have the potential to aid educators in identifying specific skill deficits for driving instructional 

decisions when used in data-analysis teaming.  It is critical to have a measure with strong 

predictive validity at gate 1 to avoid administering the more robust and time consuming 

measures used in subsequent gates (Albers & Kettler, 2014; Clarke et al., 2014; Walker et al., 

2014).   

Identification of mathematical deficits by universal screening for the purpose of early and 

effective intervention has been identified as an area in need of more research (VanDerHeyden, 

2010).  There is a need for universal screening instruments to predict a future outcome or have 

high predictive validity.  Predictor criteria are usually another instrument already shown to 

measure the skills being screened or an assessment of the desired skills.  Examples of predictor 

criteria would be a standardized academic test such as the Wechsler Individual Achievement 

Test, Third Edition (WIAT-III) or a state-mandated test of academic achievement.  State-

mandated tests of academic achievement are frequently referred to as high stakes testing due to 

the significant consequences, intended and unintended, that can impact communities, schools, 

teachers, and students.  School districts have a vested interest in being able to predict students 

who are likely to perform below proficiency on state assessments.  Students correctly identified 

as being at-risk for academic deficits through universal screening are able to benefit from 

additional instruction and intervention in an attempt to ameliorate academic deficits on a 

systemic and individual level.  This study examines the predictive power of a math computation 
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probe given in the fall, winter, and spring of first, second, and third grade with the state math 

assessment given in the spring of third grade.  The strength of the relationship between SES and 

sex with future math outcomes is also explored.  It is hoped that this study will contribute to a 

developing body of research on universal screening for mathematical deficits.   

Significance of the Problem 

Poor mathematical skills have been linked to truancy, increased disciplinary referrals, 

risk of unemployment, involvement in the criminal justice system, and increased health risks 

(Every Child a Chance Trust, 2009).  As previously noted, students who initially placed in the 

bottom 10th percentile of a criterion measure when entering kindergarten but were performing 

above the 10th percentile upon exiting only had a 30% chance of performing below the 10th 

percentile five years later while in fifth grade (Morgan et al., 2009, 2011).  These findings 

support the positive impact and necessity of early intervention for academic difficulties.  When 

effective intervention is not made available, early math difficulties correlate highly with poor 

outcomes on future indicators or mathematics performance.   

Students from low SES homes are among this population.  According to the Trends in 

International Mathematics and Science Study (TIMSS), schools with 50% or more of their 

students living in poverty, determined by number of students accessing free and reduced lunch, 

performed below average in relation to schools with lower poverty levels (Gonzales et al., 2009).  

Students living in poverty have demonstrated resistance to improved mathematical education, as 

evidenced by a slow rate of growth in comparison to other population groups (Aud, Fox, & 

KewalRamani, 2010).   

The predictive relationship with sex and future math outcomes is explored due to 

conflicted research regarding an achievement gap between males and females.  Recent research 
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does not indicate significant difference in mathematical performance between male and female 

students.  This challenges whether an achievement gap in mathematics between the sexes exists.   

(McGraw et al., 2006; Stoeb & Geary, 2013).  Hyde et al. (1990) found that sex differences in 

math is based on a stereotype that mathematical thinking is a male-dominate domain, rather than 

actual differences in male and female math achievement.   

There is a substantial amount of research that supports the practice of universally 

screening all students for the early identification and intervention of academic, social, and 

emotional difficulties in an educational setting (Kettler et al., 2014).  Student outcomes in 

academics, social skills, and behavior improve significantly when deficits are identified and 

intervened upon earlier rather than later.  Research suggests that if students do not acquire and 

master basic reading and mathematical skills by the end of third or fourth grade, there is a high 

likelihood they will continue to struggle throughout their school career (Elliot, Huai, & Roach, 

2007; Morgan et al., 2011).  Increased academic, social, and/or behavioral difficulties are 

considered significant predictive factors for poor outcomes such as high school dropout, drug 

and alcohol abuse, and future or exacerbated mental health issues and highlight the need for 

early, proactive intervention (Every Child a Chance Trust, 2009; Walker & Shinn, 2010).  Poor 

student outcomes, in turn, impact schools, communities, and society by effecting the local 

economy and job-market.  Ultimately, this becomes a factor when the United States is competing 

with other nations to remain a leader in the global economy (PCAST, 2011).  MTSS models give 

particular attention to developing the ecological factors that promote positive student outcomes, 

including home-school relations, school climate, and skill-level of school personnel (Stoiber, 

2014).   
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Over the past decade, several precipitating events have led to an increased focus in the 

area of mathematics.  The National Council of Teachers of Mathematics (NCTM) released their 

Focal Points (2006), effectively ending the debate regarding math curriculums, dubbed the Math 

Wars, by establishing the importance of automaticity and problem solving skills (Davison & 

Mitchell, 2008; NCTM, 2006).  Two years later, the National Mathematics Advisory Panel 

released Foundations for Success (2008) which identified significant weaknesses in 

mathematical education and made recommendations to remediate current math education 

practices.  These recommendations are reflected in the 2010 adoption of the Common Core State 

Standards.   

As education systems adapt to provide the more rigorous Common Core State Standards 

with less financial and personnel resources, the prevalence of MTSS implementation is 

increasing (Stoiber, 2014).  MTSS models promote a more efficient and effective use of 

personnel and financial resources by addressing the diverse needs of all students in one cohesive 

system as opposed to many dueling or parallel systems.  This allows systems to work smarter, 

not harder, decreasing financial and personnel strains while improving student outcomes.  

Universal screening is an essential component of multi-tiered systems (Albers & Kettler, 2014; 

Kettler et al., 2014; Stoiber, 2014).  However, there is limited research in universal screening 

measures and procedures, especially when screening for mathematical skill deficits (Clarke et al., 

2014; Methe, 2009).  There are not specific regulations regarding the technical adequacy of 

assessment measures used to make instructional decisions, but there are guidelines for best 

practices.  Professional organizations such as the National Association of School Psychologists 

(NASP) and the American Psychological Association (APA) offer guidelines under ethical 

implementation of best practices (Jacob & Hartshorne, 2003).  Practical application and ethical 
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issues require that more research is needed to improve the practice of universal screening in the 

area of mathematics, especially in the areas of decision rules and technical adequacy.   

Math screeners demonstrate higher specificity than sensitivity indicating they are better at 

detecting students who will emerge with math difficulties as opposed to those who will develop 

adequate math skills (Fuchs et al., 2007).  This suggests that when using Math-CBM (CBM-M) 

as a universal screening tool, the probability of false positives, or over identifying students as 

being at-risk, is higher than the probability of false negatives.  This could be problematic when 

evaluating core curriculum.  The core curriculum may appear to be ineffective for an inflated 

number of students.  This also presents a problem when identifying students who are at-risk and 

in need of supplemental instruction or intervention.  While universal screening instruments 

should err on the side of caution, over-identification of students who are in need of additional 

support may unduly burden school resources, including money and intervention personnel time.   

Gersten and Jordan (2005) suggested there is research to validate screening instruments 

for later math difficulties, but there is limited research in early math skill screenings.  More 

recent research has found a strong relationship between number sense skills in kindergarten and 

first grade, by administering CBM-M measures of early numeracy skills (Missall, Mercer, 

Martinez & Casebeer, 2012).  Jordan, Glutting, Ramineni, and Watkins (2010) found early 

numeracy skills predict future math outcomes, indicating good predictive validity.  There was a 

strong correlation between performance on a brief screen of number sense administered in 

kindergarten and first grade with math outcome while in third grade.  Early numeracy or number 

sense skills require the understanding of numbers and relationship between numbers such as 

differentiating between number magnitudes, counting, and making sets of numbers (Jordan, 

Kaplan, Ramineni, & Locuniak, 2009).   
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After an extensive literature review, early numeracy skills and the extent in which they 

predict future math outcomes was again identified as an area of need by Gersten et al. (2012).  

Although there are no agreed upon general outcome measures in mathematics, there is a fair 

amount of literature correlating poor math fact retrieval fluency with math deficits in students 

who have been identified as low achieving, having a specific learning disability in math, and 

students with learning disabilities in both reading and math (Geary 2004; Geary et al., 2012; 

Jordan & Hanich, 2003; Martin et al., 2012).  These deficits appear to be relatively stable in both 

elementary and secondary students (Jordan & Hanich, 2003; Martin et al, 2012). 

Shapiro, Keller, Lutz, Santoro, and Hintze (2006) examined the predictive validity of 

CBM-M with PSSA performance and found a moderate relationship between students’ 

performance on CBM-M in the winter of third grade with PSSA performance in the spring of 

third grade.  These findings were further supported by Keller-Margulis, Shapiro, and Hintze 

(2008) who found evidence to suggest CBM-M is a valid predictive measure for student 

performance on PSSA when administered in first and second grade.  There is some evidence to 

suggest word-problem solving measures are able to predict future math problem solving 

outcomes (Sisco-Taylor, Fung, & Swanson, 2015).  However, reading and/or listening 

comprehension likely has a significant effect on student performance on these measures.  

The proposed study will expand on current research by exploring the predictive validity 

of Monitoring Basic Skills Progress, Computation probe (MBSP-C) in the fall and winter of first, 

second, and third grades with PSSA-M administered in the spring of third grade.  Knowing the 

extent to which MBSP-C predicts PSSA-M will facilitate more efficient and effective early 

intervention practices.  The contribution of SES on PSSA-M achievement is examined given 

students in low-income homes have been identified as a population consistently under-
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performing in mathematics.  Sex as a predictive factor of PSSA-M is also studied in an attempt 

to provide some clarity among conflicting research whether or not a gender gap in mathematics 

continues to exist.   

Research Question and Hypotheses 

One broad research question was generated given the statement of the problem and 

problem significance previously reviewed: To what extent does a universal mathematics 

screening, MBSP-C in first, second, and third grade, sex, and SES predict math achievement as 

reported on the five subtests of the PSSA-M in third grade?  It is hypothesized that MBSP-C 

scores in first, second, and third grade will be moderately predictive of math achievement as 

measured by the five subtests of the PSSA-M in third grade.  Based on previous research, it is 

hypothesized the correlation between MBSP-C and PSSA-M scores will be moderate to strong.  

It is hypothesized that student performance in the fall of first grade will have the weakest 

correlation with PSSA performance and student performance in the spring of third grade will 

have the strongest correlation with third grade PSSA-M achievement due to time proximity 

between MBSP-C and PSSA-M administration.  It is further hypothesized that SES will account 

for a significant amount of variance on PSSA-M achievement, with the potential to decrease the 

longer students are in a high quality educational setting.  However, previous research has 

indicated students living in poverty are more resistant to improvement in mathematics 

instruction, so there is potential for the amount of variance accounted for by SES to remain the 

same or increase the longer a student is in an educational setting.   

It is also hypothesized that MBSP-C will have the strongest correlation with the Numbers 

and Operations subtest of the PSSA-M.  The Numbers and Operations subtest of the PSSA-M 

asks students to demonstrate an understanding of numbers, ways of representing numbers, 
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relationships among numbers and number systems, an understanding of the meanings of 

operations, use of operations and understanding how they relate to each other, the ability to 

compute accurately and fluently, and the capacity to make reasonable estimates.  These skills 

closely resemble those assessed on the MBSP-C probes; therefore, it is predicted the strongest 

prediction of the MBSP-C will be to the Number and Operations subtest of the PSSA-M.  

It is hypothesized that sex and resource availability will have a moderate association with 

math achievement, based on highlights from the 2007 TIMSS (Gonzales et al., 2009).   A 

secondary hypothesis is offered that if a gender gap is present, it will be among high achieving 

students as opposed to low performing students (Stoet & Geary, 2013).  It is hypothesized that 

SES and sex will not have a significant interaction with each other.  

Definition of Terms 

 The following definitions are provided to clarify the very specific way terms are used 

within the context of this study.  Terms are defined to ensure uniformity of meaning throughout 

this study.   

Formative Assessment 

 Formative assessments are instruments which attempt to capture data regarding student 

learning of a particular skill or behavior at a specific point in time to inform instructional 

practices (Burns, 2010).  Appropriate formative assessment instruments should be able to 

measure growth over time, be instructionally diverse, and practical to administer.  Formative 

assessment instruments need to demonstrate technical adequacy and treatment sensitivity (Clarke 

& Shinn, 2004; Fuchs & Fuchs, 1999; Stecker & Fuchs, 2000).  CBM are frequently given as 

examples of formative assessment.   
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Curriculum Based Measures   

 CBM are defined as a “set of standardized and specific measurement procedures that can 

be used to quantify student performance in the basic skill areas of reading, spelling, mathematics 

computation, and written expression” (Hintze, Christ, & Methe, 2006, p. 51).  CBM are used to 

assess students on content directly related to the curriculum.  CBM are frequently used for 

progress monitoring student learning and as universal screening instruments.  Teachers can use 

data from CBM to inform instructional decisions.      

Summative Assessments                                                                                                  

 Summative assessments are used to assess student learning after instruction.  Summative 

assessments evaluate the extent to which a student has learned what was taught.  An example of 

a summative assessment is a state-mandated academic achievement test administered in the 

spring of the school year, assessing students on the core standards they were expected to learn 

while in that particular grade.   

High Stakes Testing 

 High stakes testing is the term given to assessments that have significant consequences 

tied to test results.  State-mandated achievement tests are often considered a high stake test 

(Braden & Schroeder, 2004).   

Specific Learning Disability 

 IDEIA (2004) recognizes 13 disability categories for which students can receive 

specially-designed instruction through an Individualized Education Program (IEP).  Specific 

learning disability (SLD) is one of the disability categories recognized by federal law.  Eligibility 

for a SLD considers underachievement, evidence of learning difficulties and exclusions of other 

factors which may impact learning such an intellectual disability (Lichtenstein, 2014).  Eligibility 
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for a specific learning disability is determined by a multi-disciplinary evaluation.  Parental 

consent for a multi-disciplinary evaluation is required.  Students with a specific learning 

disability typically demonstrate poor academic achievement in one or more area that cannot be 

explained by socio-economic status, limited opportunity to learn, English as a second language, 

an intellectual disability, truancy, and/or an emotional disturbance (Huefner, 2006).  Once a 

student is found to be eligible and in need of specially designed instruction an IEP is developed.  

Students are re-evaluated a minimum at least once every three years to determine if they still 

meet criteria of a SLD and are in need of specially designed instruction.  Approximately 5 – 8% 

of the student population is thought to have a SLD in mathematics (Clarke et al., 2014).    

Individualized Education Program 

 An IEP is required under IDEIA for any student who meets criteria for one of the 13 

disability categories and demonstrates a need for special education services.  The purpose of the 

IEP is to outline goals, specially-designed instruction, and secure resources for the benefit of the 

student.  The IEP is developed by a student’s educational team which includes parents, general 

education teachers, special education teachers and specialists, a representative from the local 

education agency, and depending on age, the student.  IEPs are reviewed and revised a minimum 

of one time per calendar year, but should be fluid in nature to reflect the changing needs of the 

student (Huefner, 2006). 

Resource Availability 

 Resource availability is defined as the economic contributing factors of the child as 

reported by whether or not the child qualifies for the school’s free or reduced meal program.  

Resource availability is used as a measure of socio-economic status.   
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Early Intervention 

 Early intervention services are composed of four key principles.  First, early intervention 

requires effective screening instruments to identify students who may be at risk for future 

academic, social, emotional, or behavioral problems.  Second, once these students are identified, 

the intensity of instruction changes through additional intervention and/or differentiation in the 

classroom.  Third, the student’s response to intervention is progress monitored to determine 

growth over time (Clarke, Baker, Smolkowski, & Chard, 2008).  Lastly, progress monitoring 

data, along with other available formative and summative assessments are used to inform 

instructional decisions regarding whether the intervention should be modified, continued, or 

discontinued. 

Multi-Tiered Systems of Support 

 MTSS are problem-solving systems of service delivery in schools focused on improving 

school outcomes for all students through high quality and differentiated instruction.  The 

intensity of instruction is matched to a student’s learning needs.  Key features of MTSS systems 

include evidence-based practices, data-based decision making, proactive early intervention of 

academic and behavior deficits, universal screening, coordination of intervention and intensity of 

instruction based on student need, and fluidity of programming based on student need (Stoiber, 

2014).   

Response to Intervention   

 RTI is method of determining whether or not a student is in need of special education 

services.  In an RTI model, eligibility and decisions regarding educational programming are 

made based on a student’s response to an intervention that is matched to identified skill deficits, 

is research-based, and is implemented with integrity.  RTI models are supported by legislation, 
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and research prioritizes the need for an effective core curriculum and early identification of 

students in need of additional instruction or intervention.  RTI is the preferred method to 

determine SLD in a MTSS model (Kovaleski, VanDerHeyden, & Shapiro, 2013). 

Gated Evaluation System   

A gated evaluation system, also referred to as a multiple-gate model, is an assessment 

model for identifying students at risk for school failure (Albers & Kettler, 2014; VanDerHeyden, 

2010).  A different instrument is used at each stage, therefore eliminating students who were not 

identified as being at-risk.  An example of a gated evaluation system would be an entire grade 

completing an oral reading probe (i.e., Gate 1).  Students who perform below the 20th percentile 

on the Gate 1 assessment would then be administered a Gate 2 assessment, for example, a 

reading comprehension CBM.  Students who perform below a pre-established percentile rank on 

the Gate 2 measure would then complete a more comprehensive measure, such as CORE’s 

Multiple Measures Reading Assessment (Arena Press, 2008), which not only identifies below 

grade level skills, but identifies specific areas of deficit for intervention purposes.  While more 

research is needed, initial findings support gated evaluation procedures as an accurate method for 

identifying students at risk (Albers & Kettler, 2014; Fuchs, Compton, et al., 2011; 

VanDerHeyden, 2010).   

Universal Screening   

 Universal screening is “the systematic assessment of all children within a given class, 

grade, school building, or school district, on academic and/or social emotional indicators that the 

school personnel and community have agreed are important” (Ikeda, Neessen, & Witt, 2008, p. 

103).  Data from universal screenings are used to identify students who would benefit from 
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additional intervention and to evaluate the effectiveness of an educational system, curriculum, or 

program (Kettler et al., 2014).   

Predictive Validity   

 Predictive validity is a type of criterion validity, or the degree to which an instrument 

accurately projects a specific outcome.  Within the context of MTSS, predictive validity is the 

extent to which an instrument can predict a future skill or behavior (Jackson, 2003; Leary, 2001). 

Outcome Criterion   

 The outcome criterion is the term used to describe a future measure that serves as the 

index to which all tests are compared, such as state-mandated tests of academic achievement and 

nationally normed academic achievement tests (VanDerHeyden, 2010).  Outcome criterion are 

also referred to as predictor criterion.  The outcome criterion used in this study is the PSSA-M.  

 Classification Accuracy 

 Classification accuracy is the extent screeners can accurately identify students based on 

their performance on both the screener and some external criterion (Gersten et al., 2012; 

VanDerHeyden, 2010, 2011).  There are four outcomes of classification accuracy, (a) true 

positive, (b) true negative, (c) false positive, and (d) false negative.  Screening tools should 

maximize sensitivity and specificity by setting accurate cut-scores (Kamphaus, Reynolds, & 

Dever, 2014).  Classification accuracy was founded in the medical field, were a positive result 

indicates the presence of a problem and a negative result indicates no problem or typical 

outcomes.   
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Sensitivity   

 Sensitivity refers to the portion of true positives correctly identified by a test or 

instrument (VanDerHeyden, 2011).  Sensitivity is a measure of a test’s power to correct identify 

the presence of a deficit.   

Specificity   

 Specificity refers to the proportion of true negatives detected by a test or instrument 

(VanDerHeyden, 2011).  It is a measure of a test’s power to correctly identify the absence of a 

problem.   

True Positive   

 A true positive outcome indicates the predictor instrument correctly detected the presence 

of a problem, meaning the predictor instrument and the criterion measure are in agreement 

(Christ & Nelson, 2014).   In relation to universal screening, a true positive means the universal 

screening data correctly identified students as being at-risk for academic, social, or behavioral 

deficits.  Within the context of the present study, a true positive means the predictor instrument 

correctly indicates that a math deficit is present. 

True Negative 

 A true negative is when a predictor and criterion measure agree a problem is not present 

(Christ & Nelson, 2014).  In other words, a true negative is when universal screening instrument 

correctly identifies when a disease is not present. Within the context of the present study, a true 

negative means the predictor instrument correctly indicates that a math deficit is not present. 

False positive 

 A false positive is when the predictor incorrectly identifies the presence of a problem.  

The predictor measure indicates a problem that is not confirmed on a criterion instrument, 
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resulting in an inaccurate classification (Christ & Nelson, 2014).  A false positive on universal 

screening data means the screener incorrectly suggests the presence of a problem when no 

problem is present.  Within the context of this study, a false positive indicates that the predictor 

instrument incorrectly indicates that a math deficit is present. 

False Negative 

 A false negative is when the predictor fails to identify that a disease or condition is 

present (Christ & Nelson, 2014).  An example of a false negative is when universal screening 

does not identify a problem when a problem is, in fact, present. Within the context of this study, 

a false negative occurs when the predictor instrument incorrectly indicates that a math deficit is 

not present.  This is considered the most problematic classification error because students are not 

identified to receive intervention necessary to remediate areas of need.  

Assumptions 

There are several assumptions made regarding the instruments and procedures used in 

this dissertation.  It is the assumption of this study that MBSP-C meets the requirements to be 

used as a universal screening measure within the sample school district.  To meet the criteria of 

an appropriate universal screening the instrument should be able to (a) identify potential 

academic and/or behavioral concerns at a system and individual level, (b) provide information 

related to how students are responding to core instruction, (c) provide data to teachers to inform 

instruction and align instructional resources, and (d) demonstrate adequate reliability and validity 

(Albers & Kettler, 2014; Kettler et al., 2014).   

It is assumed MBSP-C and PSSA-M meet all professional standards, generate tests scores 

that distinguish among students, are able to identify students performing above and below the 

expected level of achievement, are composed of items sensitive to change in performance, and 
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have had sources of bias  been eliminated.  It is further assumed adequate training is given to 

educators in scoring, administration, and interpretation of test results for both MBSP-C and 

PSSA-M (Ikeda et al., 2008).  It is assumed MBSP-C were developed in accordance with 

universal design.  Universal design is the ability of an assessment instruments to be accessible 

and sensitive to the characteristics of all potential test takers (Anderson et al., 2011).   

Universal screening is not used with select students, but is administered individually or in 

a group to an entire classroom, grade, school, or district.  It is the assumption of this study that 

MBSP-C was administered to all students attending the three elementary schools in the sample 

population.   

It is assumed that all screenings and state assessments were administered and scored in 

accordance with standardized procedures.  Due to the use of archival data, protocols to ensure 

standardized administration of assessments could not be implemented.  However, administration 

of the math screening measure was completed by the same person using scripted standardized 

directions.  Standardized administration procedures of MBSP-C were overseen by two building 

principals who lead the math curriculum committee.  PSSA-M was administered by classroom 

teachers, school counselors, reading specialists, intervention support teachers, and learning 

support teachers.  Classroom teachers and school staff who proctor the state achievement test 

have to complete yearly training to ensure correct testing procedures are followed.  

Administration of PSSA-M was monitored by building principals.  Administration procedures 

are monitored by state compliance officers who conduct random unscheduled visits to schools 

during the PSSA testing window. 

The math curriculum taught to the sample population is assumed to be similar to other 

school districts within Pennsylvania, as they were in the process of adopting PA Common Core 
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standards.  Secondly, it is assumed students received appropriate instruction provided by 

qualified teaching professionals.   

Limitations 

 Limitations to this study stem primarily from the use of a convenience sample and 

archival data.  Additional limitations are variations in the implementation of math curriculums 

and technical adequacy of universal screening instruments. 

 Limitations to this study include the use of a convenience sample.  All data were gathered 

from a rural school district in Pennsylvania.  This sample population may not be representative 

of the population as a whole, which limits generalizability of the findings to more diverse student 

populations.  This study is also limited by the screening measure used within this school district.  

MBSP-C was the only mathematical screening instrument used, therefore, there is no basis for 

comparison between it and another universal screening instrument. 

The use of archival data created several limitations.  Standardized administration of 

MBSP-C is assumed but not guaranteed.  Secondly, the school district did not retain completed 

MBSP-C probe sheets, therefore, scoring accuracy and correct data entry into the data warehouse 

cannot be verified.  

The large amount of variability that occurs naturally within math curriculums from 

school district to school district is another limitation as is variation in quality of instruction from 

classroom to classroom (Davison & Mitchell, 2008; Kelley, 2008).  Use of archival data did not 

allow for quality control checks regarding instruction and accurate implementation of the 

district’s math curriculum.  This limitation is minimized by the adoption of the PA Common 

Core, which standardized required instructional content and curriculum expectations.   Math 

screeners demonstrate higher specificity than sensitivity indicating they are better at detecting 
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students who will emerge with math difficulties than those who will develop adequate math 

skills (Fuchs et al., 2007).  This suggests when using CBM-M as a universal screening 

instrument, the probability of a false positive is high.  Given the primary function of universal 

screening is to identify students who are at-risk for deficits, over identification rather than under 

identification of students for tiered support is preferred.   

Summary 

 This chapter provides a brief historical context for this study, specifically how MTSS 

require the utilization of universal screeners to identify students in need of additional instruction 

and intervention beyond the core curriculum.  Fundamental considerations of universal screeners 

were noted with an emphasis placed on empirically-validating the predictive strength of math 

screeners to appropriately identify students at risk for failing high-stakes testing outcomes. 

Lastly, the research question, definition of terms, assumptions, and study limitations were 

outlined and discussed.  
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CHAPTER II 

REVIEW OF RELATED LITERATURE 

Math Domains 
The development of mathematical skills is so complex that experts in the field have not 

been able to generate clearly defined general outcome measures and subsequently what skill 

deficits constitute a math disability.  Therefore, in order to give meaning to the constructs 

frequently assessed in math, it is necessary to review the development of mathematical skills and 

mathematical knowledge domains.   

While mathematics processes are understudied, with many unanswered questions (Fisher, 

Doctoroff, Dobbs-Oats, & Arnold, 2012; Kelley, 2008; Mazzocco, 2003), mathematical 

proficiency is currently thought to be based on four mathematical knowledge domains that are 

used to guide mathematical instruction, (a) conceptual knowledge, (b) strategic or procedural 

knowledge, (c) factual or declarative knowledge, and (d) problem-solving skills or application 

knowledge (Kelley, 2008).  These domains are also referred to as instructional domains and, 

according to the National Council of Teachers of Mathematics (NCTM), should each be 

represented in the content areas of numbers and operations, algebra, geometry, measurement, 

data analysis, and probability.     

 Conceptual knowledge is defined as, “a deep understanding that allows categorization of 

examples from non-examples and the critical attributes from the noncritical attributes of the 

concept” (Kelley, 2008, p. 421).  Conceptual knowledge is considered the primary goal of 

mathematics (Hudson & Miller, 2006; Miller & Hudson, 2007).  It is believed to be a necessary 

skill to progress through mathematics curriculum, apply skills in other content areas, and 

generalize to real-world applications.  It is also important to note that conceptual knowledge 
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encompasses knowing definitions, rules, routines/problem-solving procedures of a concept 

(Kelley, 2008; Miller & Hudson, 2006).   

 Strategic or procedural knowledge is the sequential steps used to do something, in this 

context, solve a math problem (Hudson & Miller, 2007; Kelley, 2008; National Research 

Council, 2002).  These skills are required to solve computation problems and apply math skills 

outside of the classroom. 

 Factual or declarative knowledge describes all the basic facts required to solve 

mathematical problems (Kelley, 2008; Miller & Hudson, 2007; National Research Council, 

2002).  These include basic math computation facts, terminology, counting, number 

identification, and symbol identification (Kelley, 2008).  Factual knowledge skills should be 

taught to mastery to allow for automaticity when utilizing this information to problem solve 

(Kelley, 2008; Miller & Hudson, 2007).  

 Application knowledge or problem-solving skills are viewed by some mathematics 

instructors as a knowledge domain, but others argue it is the application of the three knowledge 

domains described above (Kelley, 2008; National Research Council, 2002).  Application 

knowledge is required to apply mathematics skills across settings.  It can be described as the 

component of math instruction that makes it functional.  It is recommended application 

knowledge be explicitly taught and embedded in instruction when developing conceptual 

knowledge, strategic knowledge, and factual knowledge (Kelley, 2008).   

 While not considered one of the mathematical knowledge domains, the National 

Research Council (2002) also recognizes Engaging as an important feature of mathematical 

learning.  Engaging is defined as, “Seeing mathematics as sensible, useful, and doable – if you 

work at it – and being able to do the work.” (National Research Council, 2002, p. 9).  It is 
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important to include Engaging as a component of high-quality math instruction given attitude 

toward math significantly effects mathematical learning outcomes.  Students need to develop the 

skills to approach mathematical learning in an engaging manner (McGraw et al., 2006; PCAST, 

2011).   

 The four mathematical knowledge domains guide formal mathematical instruction 

students receive while in school.  However, the development of mathematical understanding 

continues to develop and evolve across the life span.   

Development of Mathematical Skills 

 Three primary neural pathways have been identified in mathematical processing and 

development, (a) linguistics, (b) spatial attention, and (c) quantitative (Dehaene, Molko, Cohen, 

& Wilson, 2004; Dehaene, Spelke, Pinel, Staneseu, & Tsivkin, 1999; LeFevre et al., 2010).  

Figure 1 represents the three primary pathways involved in the development of math skills and 

corresponding early numeracy skills and mathematical outcomes.  As depicted in Figure 1, 

cognitive skills associated with mathematical learning offer both shared and independent 

contributions to the development of early numeracy skills and later mathematical outcomes.   
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Figure 1. Three pathways model of mathematical development with corresponding early 
numeracy knowledge and mathematical outcomes.  Adapted from “Pathways to Mathematics: 
Longitudinal Predictors of Performance,” by J.-A. LeFevre, L. Fast, S.-L. Skwarcuk, B. L. 
Smith-Chant, J. Bisanz, D. Kamawar, and M. Penner-Wilger, 2010, Child Development, 81, p. 
1755. Copyright 2010 by Society for Research in Child Development, Inc. Reprinted with 
permission. 

 Mathematical Development and Linguistics 

The linguistic pathway encompasses general language and language processing skills, 

such as phonological awareness, vocabulary, verbal reasoning, and listening comprehension.  

The linguistic pathway is thought to be the strongest and most consistent predictor of early 

numeracy skills (LeFevre et al., 2010; Purpura & Reid, 2016; Vukovic & Lesaux, 2013).  

LeFevre et al. (2010) found measures of linguistic accounted for a significant portion of variance 

in elision, vocabulary, and number naming.   

  

Linguistic 

Symbolic                
Number                  
Systems 

  

Spatial Attention  

  

Quantitative 

Numerical          
Magnitude          
Processes  

  

Magnitude Comparison 

Numeration              
Number Line     
Calculation  

Geometry  

Measurement 

Cognitive Skills  Mathematical         
Outcomes 

Early Numeracy 
Knowledge 



40 
 

Purpura and Reid (2016) expanded on the existing research connecting linguistics to 

mathematical learning outcomes.  The authors explored whether or not individual differences in 

mathematical language were a stronger predictor of numeracy skills than differences in general 

language.  A secondary research question investigated group differences in mathematical 

language performance based on parental education and age.  Mathematical language or math-

specific language uses vocabulary that is content-specific and required to understand 

mathematical tasks.   

In mathematics, vocabulary is frequently quantitative and spatial in nature.  Quantitative 

language includes words to describe quantities and make comparisons between numbers (e.g., 

more, less, many, and fewer).  Spatial vocabulary refers to words used to talk about relationships 

between numbers and physical objects (e.g., before, over, above, near, and far).  The findings of 

Purpura and Reid (2016) support previous research that linguistic skills are a strong predictor of 

numeracy skills in children.  The authors extended beyond previous research and determined 

mathematical language was a much stronger predictor of numeracy skills than general language.  

Mathematical language was such a strong predictor of numeracy skills that when added to a 

regression model, general language skills was no longer a significant predictor of numeracy 

skills (Purpura & Reid, 2016).     

There is a strong positive correlation between parent education level and linguistic 

development in children (Chu, vanMarle, & Geary, 2015; Lehrl, Kluczniok, & Rossbach, 2016).  

Children with at least one college-educated parent performed higher on mathematical measures 

than children in families who were not college-educated.  This is attributed to an increased use 

and exposure to mathematical language for children who had at least one college-educated parent 

(Purpura & Reid, 2016).   
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A similar topic was explored by Vukovic and Lesaux (2013).  The authors examined the 

impact of language development on mathematical skills, longitudinally from first through fourth 

grade, in native English speakers and language-minority learners.  The authors also controlled 

for visual-spatial skills, sex, and socio-economic status (SES).  They concluded that language 

ability was predictive of data analysis/probability and geometry.  Language ability was not found 

to be predictive of arithmetic or algebra.  These finding were consistent in native English 

speakers and in English language learners, which implicates language in the acquisition of 

mathematical cognition and understanding.  However, language did not influence mathematical 

learning with Arabic or abstract symbols used in arithmetic and algebra (Vukovic & Lesaux, 

2013).   

Based on this research, it can be concluded early language experiences are key in the 

development of mathematical understanding, regardless of language background. Children 

should be exposed to language and play that is rich in quantitative and spatial vocabulary.  This 

is especially important for children in low-income families, as SES is a significant indicator in 

the development of mathematical language which affects future mathematical learning outcomes 

(LeFevre et al., 2010; Lehrl et al., 2016; Purpura & Reid, 2016; Vukovic & Lesaux, 2013).   

Mathematical Development and Spatial Attention   

 Spatial attention is typically defined and measured as a function of working memory.  

Working memory involves the simultaneous storage and processing of information (Geary, 

Hoard, & Bailey, 2012; Toll & Van Luit, 2014).   It is comprised of verbal working memory and 

visual-spatial working memory.  Verbal working memory involves the phonological loop which 

processes and rehearses short-term verbal information.  Visual-spatial working memory involves 

the visuo-spatial sketchpad, which processes and rehearses visual and spatial information 
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(Lukowski et al., 2014).  Visual-spatial working memory is the “storing and processing of 

information related to shape, color, brightness, and static visual layout properties” (De Santana & 

Galera, 2014, p. 399).  Both verbal and visual-spatial working memory have been implicated in 

the development of early numeracy skills.  

Spatial attention is related to the development of number naming and numerical 

magnitude in children (LeFevre et al., 2010).  The general attentional processes of working 

memory, or the ability to hold information in short-term memory in order to process it, is 

necessary to complete the complex and multi-step requirements of many mathematical tasks 

(Geary et al., 2012; LeFevre et al., 2010; Toll & Van Luit, 2014).  Verbal working memory is a 

significant predictor of mathematical tasks that require more advanced problem solving and 

computation, such as word problems.  Verbal working memory, however, is not predictive of 

relatively simple mathematical tasks, such as basic computation (Lukowski et al., 2014).  Visual 

working memory is predictive of arithmetic reasoning, number writing, and symbolic magnitude 

(Lukowski et al., 2014; Toll & Van Luit, 2014).  Visual working memory is heavily used when 

learning a novel mathematical task whereas verbal working memory is utilized once the learning 

has been established (Toll & Van Luit, 2014).   

Mathematical Development and Quantitative Knowledge 

 Quantitative knowledge is an understanding of quantities and numbers.  Quantitative 

knowledge is required for magnitude discrimination and magnitude comparisons, or the ability to 

distinguish between amounts.  The ability to discriminate between magnitudes develops rapidly 

throughout infancy (Landerl & Kӧlle, 2009).  Quantitative knowledge has been observed in 

infants as young as 6-months-old (Wynn, 1995).  It is thought to be the core knowledge base 

underlying all other mathematical processes and development (Landerl & Kӧlle, 2009); however, 
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LeFevre et al. (2010) found quantitative knowledge to be the least predictive of future math 

outcomes in comparison to the linguistic and spatial attention pathways.   

 While more research is needed, initial findings indicate a breakdown in one or more of 

these precursor cognitive skills could be the etiology of innate mathematical learning disabilities, 

or math deficits that cannot be explained by poor instruction or environmental factors.  It is 

important to note Lukowski et al. (2014) found both genetic and environmental factors played a 

significant role in the development of mathematical skills.  Therefore, it is important to account 

for both genetic and environment factors when identifying and remediating mathematical 

deficits.  These factors are not included in the scope of the present study due to the use of 

archival data.   

Early Numeracy Skills  

 Children enter school with varied skill levels, but the majority of students have some 

understanding of numbers and number concepts.  This is referred to as early numeracy skills or 

number sense.  Similar to early literacy skills, play and observation promote development of 

math competencies long before children are school-aged (Landerl & Kӧlle, 2009; Mazzocco, 

2003; Purpura & Reid, 2016).  The innate, nonverbal ability to understand non-symbolic 

quantities is termed number sense (Price & Fuchs, 2016; Toll & Van Luit, 2014).   There is some 

evidence suggesting that a child’s understanding of magnitude begins in infancy and number 

sense is “a basic capacity of the human brain” (Dehaene, Molko, Cohen, & Wilson, 2004, p. 218; 

Landerl & Kӧlle, 2009).  Wynn (1995) found infants were able to differentiate between small 

magnitudes of dots, points of light, sound, physical action, and household items by six months of 

age.  These innate skills generally facilitate the learning and development of early numeracy 
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skills that are considered pre-requisites to the development of the four domains of mathematical 

understanding.  

Early numeracy skills are a series of pre-requisite mathematical skills necessary for more 

complex mathematical understanding and problem solving.  Early numeracy skills include verbal 

counting, recognition of number symbols and quantities, distinguishing between number 

patterns, comparing magnitudes, and estimating quantities (Fuchs, Fuchs, & Compton, 2012; 

Mazzocco & Thompson, 2005; Toll & Van Luit, 2014; VanDerHeyden & Burns, 2009).  

Development of mathematical skills is complex and affected by many non-mathematical factors 

such as language, parental education, SES, executive functions, and intelligence (Bailey, Watts, 

Littlefield, & Geary, 2014; Chu et al., 2015; LeFevre et al., 2010).  Most children transition from 

innate number sense to the development of early numeracy skills through informal play in both 

the home and pre-school environment.  Early numeracy skills are typically established during 

pre-school years (3-5 years old).  Differences and deficits in early numeracy skills can be 

detected by 5 years of age (Toll & Van Luit, 2014). 

Mathematical Development from Childhood to Adulthood   

Young children develop early numeracy skills by expanding on innate number sense 

skills.  As children progress through school into adulthood, their mathematical thinking is 

thought to transition from formal procedural thinking to more abstract thinking or application of 

formal knowledge.  This is challenged by some theories of mathematical development in which 

the opposite is proposed.  Tall (2008) and Braithwaite, Goldstone, van der Mass, and Landy 

(2016) propose young children are more abstract in their thinking and mathematical processes 

become increasingly formal the more one is exposed to mathematical information.  These 

theories rationalize that the more rehearsed a skill is, the more automatic it becomes, which in 
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turn decreases the use of abstract thought.  Both theories of development have support in the 

research.  From an educational perspective, the outcome is the same: Children require explicit 

instruction in math concepts, procedure, and increased opportunity to apply formal procedural 

knowledge in order to develop problem-solving skills as represented in the four domains of 

mathematical knowledge (conceptual knowledge, strategic or procedural knowledge, factual 

knowledge, and application knowledge [Braithwaite et al., 2016; Kelley 2008; Tall, 2008]).  The 

development of mathematical literacy is dependent upon the development of each inter-

connected knowledge domain.  Due to the interdependent nature of the domains, difficulty with 

one or more of them is likely to impact mathematical learning and future outcomes. 

Math Learning Disabilities 

Historically, educational researchers and practitioners struggled to determine whether 

performance deficits are due to a lack of effective instruction, a true learning disability, or a 

combination of the two.  Differentiating between a learning disability and deficits due to poor 

instruction is especially difficult in ineffective educational systems, which can result in over-

identification of specific learning disabilities. 

Approximately 5% to 8% of children are believed to have some form of a mathematical 

learning disability (MLD; Geary, 2004; Shin & Bryant; 2015).  The complexity of math 

development has led to inconsistent definitions of what constitutes a math learning disability, 

which, in turn, affects how to best identify a math disability (Mazzocco, 2003).  Some of the 

most notable challenges to the identification of a learning disability are the non-sequential 

development of math skills, wide ranges of math curriculums, and inconsistencies in math 

instruction.   
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The research reviewed below provides information regarding frequent characteristics of 

math disabilities, potential academic and cognitive indictors of a MLD, and the stability of MLD 

over time.  These all support the necessity of early intervention of math deficits through 

universal screening practices.   

Characteristics of MLD  

 The components of mathematical understanding are not learned in isolation.  Features 

required for mathematical proficiency are interdependent on each other and interwoven; one area 

of deficit can have a cascading effect on learning and achievement (National Research Council, 

2002).  MLDs can present as deficits in one or more of the mathematical domains or as one or 

many individual skills within a single domain (Geary, 2004).  For example, many children with 

MLD demonstrate average number processing skills in isolation (factual knowledge), but 

demonstrate frequent, persistent errors when applying these skills to complete mathematical 

processes, i.e., arithmetic (strategic or procedural knowledge).  These students may not be 

identified as at-risk on early numeracy skill universal screening instruments; however, deficits in 

complete mathematical processes are more apparent on timed assessments, which require 

automaticity (Geary, 2012).   

When comparing differences in performance between students with MLD and non-

learning disabled (NLD) peers (based on age and/or grade normative data), Shin and Bryant 

(2015) found NLD peers outperformed students with MLD in the areas of mathematical 

calculations, word problem solving, arithmetic strategies, and number sense skills at both the 

elementary and secondary level.  The most sizable group differences were observed on measures 

of mathematical calculation and arithmetic strategies.  Students with MLD had significantly 

weaker counting strategies than NLD students when engaging in problem solving.  Of significant 
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note, the authors found both groups, those with and without a MLD, struggled when asked to 

prove problems as a means of assessing mathematical reasoning.  This suggests a need for 

improved instruction to facilitate the development of mathematical reasoning skills for all 

students.  Geometry was another area of relative weakness for both peer groups with and without 

MLD (Shin & Bryant, 2015).   

Geary (2004) found that students with MLDs frequently had difficulty with retrieval of 

basic arithmetic facts from long-term memory.   This research was furthered by Geary, Hoard, 

and Bailey (2012).  The researchers compared fact retrieval fluency in children identified as low 

achievers in mathematics and those identified as a having a specific learning disability in 

mathematics.  Over the course of the three-year longitudinal study, the researchers compared fact 

retrieval deficits in students identified as having a specific learning disability in mathematics and 

students identified as low achieving in mathematics.  Students with MLDs were defined as those 

who demonstrated achievement below the 10th percentile in mathematics on standardized tests of 

achievement for multiple years who also demonstrated low average reading, working memory, 

and general IQ.  Students identified as low achieving were described as having average reading 

achievement, IQ, and working memory, while their performance on standardized mathematics 

achievement tests fell within the 10th and 25th percentile.  The low achieving (LA) students were 

separated into two subgroups, LA-mild fact retrieval and LA-severe fact retrieval.  MLD and LA 

students were compared and contrasted with each other and with typically achieving peers.  The 

fact retrieval of 231 students were studied over the course of three years, from kindergarten 

through third grade.   

The findings of this study suggest that fact retrieval deficits are persistent in both children 

with MLDs and LA-severe fact retrieval, supporting the use of a fact-based measure as a 
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universal screening tool.  Geary et al. (2012) noted the deficits of children identified as LA-

severe fact retrieval were not accurately represented on untimed standardized measures.  It is 

hypothesized that because children with mathematical difficulties do not demonstrate 

automaticity of basic math facts and/or possess adequate conceptual understanding, they require 

more time to problem solve, which significantly impacts performance on timed measures (Fuchs 

et al., 2005; Geary et al., 2012; Shin & Bryant, 2015).  These findings support the use of a timed 

measure for the purpose of universal screening. 

Namkung and Fuchs (2012) investigated potential differences in early numerical 

competencies for students who demonstrate deficits in either computation or word problem-

solving in an attempt to develop early identification of math disability subtypes.  The researchers 

compared early numerical competencies or early numeracy skills of numerical magnitude, 

counting knowledge, numerical value of small quantities, between second grade students with 

computational difficulty, word problem solving difficulty, students demonstrating difficulty in 

both areas, and children demonstrating typical development of math skills.   

Namkung and Fuchs (2012) found that typically-developing students outperformed 

students with computational difficulty, word problem solving difficulty, and students with skill 

deficits in both computation and word problem solving on measures of precise representation of 

small quantities and large magnitudes.  Students categorized as having computational difficulty 

or word problem solving difficulty performed comparably, with both groups outperforming 

students who demonstrated deficits in both math skills.  On assessments of counting knowledge, 

students with computational or word problem solving difficulties performed comparably to 

students with typical development.  All three groups outperformed students who demonstrated 

both computational and word problem solving difficulty.  No discernable differences between 
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subtypes of math disabilities were identified until a subtraction probe was administered 

(Numkung & Fuchs, 2012).  Students categorized as demonstrating typical math development 

once again outperformed all three subgroups of students with math deficits.  On the subtraction 

measure, students with computational difficulties outperformed students with word problem 

solving difficulties and those with computational and word problem solving difficulties.  This 

suggests differences between young students with deficits on computational tasks and those with 

deficits in solving word problems or deficits in both areas are not captured with measures of 

early numerical competencies.  The findings of this study provide support for use of multiple-

skill measures as universal screening instruments because they are able to identify students who 

may have one or more mathematical deficits who would not be detected as at-risk with a single-

skill computation universal screening measure.    

Cognitive deficits characteristic of MLD.  In addition to low mathematical 

achievement, students with mathematics disabilities frequently demonstrate cognitive deficits 

(Geary, 2004; Murphy et al., 2007).  Students with MLDs demonstrate cognitive deficits in one 

or a combination of executive functioning, which encompasses working memory, information 

representation and manipulation in the language system, and visual-spatial systems (Geary, 

2004). 

Toll and Van Luit (2014) explored cognitive deficits which may indicate poor early 

numeracy skills in young children (N = 990, M age = 4.55).  The authors found verbal working 

memory, symbolic comparison, and math language correlated with deficits in early numeracy 

skills.  Children with poor numeracy skills at the start of that study demonstrated significantly 

high rates of growth once receiving formal instruction throughout their kindergarten year (Toll & 

Van Luit, 2014). 
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When evaluating predictive factors through multiple linear regression, the researchers 

found reading, inattention, broad computation, and specific skill fluency tasks (initial score only) 

to be uniquely predictive.  However, basic math calculation skills, such as those assessed with 

Monitoring Basic Skills Progress, Computation (MBSP-C) probes, were found to be a better 

predictor of mathematical problem solving skills than cognitive factors that impact math 

performance including visual spatial processing, fluid reasoning, working memory, processing 

speed, crystalized intelligence, auditory processing, and long-term retrieval (Decker & Roberts, 

2015).  This research indicates that while students with MLD frequently demonstrate deficits in 

one or more areas of executive functioning including working memory, information 

representation and manipulation in the language system, and visual-spatial systems, instruments 

that detect cognitive deficits are not effective universal screeners for mathematical deficits.  

 Distinguishing MLD from co-morbid reading disabilities.  Much attention has been 

given to the strong correlation between reading skills and academic achievement in mathematics.  

Research has indicated reading universal screening measures are strong predictors of math 

deficits, especially when students have comorbid reading and math disabilities (Codding, 

Petscher, & Truckenmiller, 2015; Toll & Van Luit, 2014).  Therefore, it is important to explore 

measures that can differentiate between reading deficits and mathematical deficits. 

Computation deficits are prevalent in both students who are low-achieving and those 

identified as having a MLD; however, computation deficits are not prevalent in students who 

demonstrate typical achievement or those with a reading disability (Geary, 2004; Shin & Bryant, 

2015).  This suggests that computation fluency measures are better able to distinguish between 

students with MLD and those with stand-alone or comorbid reading disability with more 

accuracy than other measures such as word problem measures.  Subsequent research reviewed in 
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this section provides support that math CBM are more predictive of future math outcomes than 

reading measures.  Math measures are also able to better distinguish between students with 

deficits solely in mathematics and those with co-morbid reading deficits.   

Jordan, Hanich, and Kaplan (2003) conducted a longitudinal study to investigate 

mathematical competencies of students with mathematical difficulties verses students with 

comorbid reading and mathematical difficulties.  Participants included 190 students who were 

followed from 2nd to 3rd grade.  The students were identified as belonging to one of the following 

groups: math difficulty only (MD), math and reading difficulties (MD-RD), reading only 

difficulties (RD), or normal achievement (NA).  The authors found similar rates of growth across 

all four groups.  Students with both reading and mathematical difficulties were consistently 

outperformed by students in the NA and RD groups.  Students with MD performed higher than 

MD-RD on measures of math problem solving, but not in the area of calculation.  Of particular 

interest to the current study, calculation fluency and fact mastery deficiencies were persistent in 

both the MD and MD-RD groups.  This supports calculation fluency and instruments requiring 

automaticity of basic arithmetic skills be considered as general outcome measures.  

A second thorough review of the literature over a decade later generated similar findings 

regarding the importance of math fact automaticity with future math outcomes.  Shin and Bryant 

(2015) synthesized the literature regarding the mathematical and cognitive performances of 

students with math difficulties and those with comorbid reading difficulties.  The authors 

searched for all published articles from 1975 to 2011 that focused on the relationship between 

mathematics and cognitive functioning in students with MLD.  The initial search yielded 538 

studies, 105 of which were selected for more thorough review.  Of the 105 reviewed, 23 met 

inclusionary criteria.  The authors focused on studies which compared the performance of MLD 
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to students with MLD/RLD and students with no learning disabilities (NLD).  Based on this 

literature review, there were no significant differences between MLD and MLD/RLD students on 

measures of mathematical calculation.  However, students with MLD performed significantly 

higher than those with both a MLD/RLD on word problems and arithmetic fact strategy.   

Fact retrieval fluency deficits were pervasive and persistent in both elementary and 

secondary students with a MLD and MLD/RLD (Geary, 2004; Shin & Bryant, 2015).  Students 

with MLD demonstrated significantly better scores on instruments assessing completion of word 

problems than those with reading and math deficits.  However, the authors found insignificant 

differences between the two student groups on instruments assessing mathematical calculation 

skills.  This suggests the need to focus on skills such as basic fact fluency and approaches to 

solving math word problems (Shin & Bryant, 2015).   

Both studies support the role of math computation knowledge and automaticity as strong 

predictors of future math outcomes.  This, in turn, supports the use of a computation-based 

fluency measure for the purpose of universally screening students who would benefit from 

additional math intervention.  Computation deficits are prevalent in both students who are low-

achieving and those identified as having a MLD; however, computational deficits are not 

prevalent in students who demonstrate typical achievement or those with a reading disability.  

This suggests that computation fluency measures are better able to distinguish between students 

with MLD and those with independent or comorbid reading disabilities with more accuracy that 

other instruments such as word problem screeners.   

Stability of MLD.  After second grade, math proficiency is relatively stable, supporting 

the necessity of early detection and intervention of math deficits (Jordan & Hanich, 2003; 

Jordan, Hanich, & Kaplan, 2003).  The stability of math proficiency was further explored by 
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Martin et al. (2012).  The researchers sought to further define MLDs and outcomes by looking at 

the severity of the deficits in relation to categorical change and continuous change over time.  

The authors identified categorical change as changes in a students’ educational program as it 

related to their need for specially designed instruction.  In other words, categorical change is 

used to describe whether or not a student continues to be in need of special education services.  

Continuous change is defined as student growth over time, regardless of how they are 

educationally identified or labeled. The method of MLD determination is taken into account 

because of potential differences in access to intervention and lack of consensus regarding best 

practices when identifying MLD.  The identification measures reviewed include the following: 

IQ-achievement discrepancy, performance below a percentile cutoff score, intra-individual 

differences, and response to intervention.   

Previous research on the stability of MLD in terms of categorical change indicates that 

MLD are relatively dynamic based on what skills are measured at different stages in a student’s 

education (i.e., students previously identified as meeting criteria of a MLD may no longer do so 

at a later point in time, or students originally identified as being low risk meet the criteria of a 

MLD at a later date).  Stability of math deficits in terms of continuous change in a naturalist 

environment is explored in Martin et al. (2012).  Typically, continuous change is studied to 

determine the effectiveness of a particular intervention.  The growth of students receiving 

intervention is compared to growth of students in the control group.  The researchers calculated a 

reliable change index for students outside of the context of a specific intervention.  It was 

hypothesized that students with MLD would demonstrate more categorical change than students 

without a learning disability.  The researchers separated student with MLD into two categories 

based on severity.  Students with more severe deficits demonstrated more positive continuous 
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change but less categorical change than students with a less severe disability.  Conversely, 

students with less severe MLD demonstrated more categorical change and less positive 

continuous change.  It is important to note, categorical change is more prevalent in younger 

students (Martin et al., 2012).    

 Research indicates that some populations are more likely to enter school with deficits in 

mathematical learning.  These populations include children living in low-income families and to 

a lesser extent females.  However, research regarding a mathematical achievement gap between 

males and females is conflicting and inconsistent.  Regardless of the root cause of early 

mathematical deficits, proactive intervention has been shown to be beneficial, necessitating the 

need for universal screening practices in mathematics.   

Sex Differences in Math Achievement 

As the world becomes more focused and reliant on technology, the quality of our science, 

technology, engineering, and mathematics (STEM) education becomes increasingly important 

for the United States to remain competitive in a global economy.  According to a 2011 report 

produced by The President’s Council of Advisors on Science and Technology (PCAST), the 

United States is lagging significantly behind other nations in STEM education at the elementary 

and secondary levels.  When ranked in comparison to international counterparts, the United 

States is consistently falling at or below the middle of the group.  According to the National 

Academy of Sciences (2005), there is a culture of dislike toward mathematics instruction in the 

United States.  The authors suspect this is due to an overemphasis on rules and procedures and 

not enough explicit instruction on real-life application of skills.  The culture toward math in the 

United States also perpetuates the myth that you are either good at math or you are not.  This 
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culture differs from that of other developed countries, where people view success in math as 

being directly related to the effort put into learning it.   

Many minority groups and women are under-represented in STEM professions.  The 

number of women seeking higher education and joining the workforce continues to increase but 

is not reflected in STEM professions.  The National Science Foundation (2015) reports 23% of 

doctorates in mathematics, 40.6% of master’s degrees, and 43.1% of Bachelor’s degrees are 

awarded to women.  This is disproportionate considering women represent over half of all 

academic degrees earned.  Women are awarded 57.4% of bachelor degrees, 62.6% of master’s 

degrees, and 53.3% of doctorates (U.S. Department of Education, 2012).   

 According to PCAST (2011), there is a troubling lack of interest in STEM-related fields. 

Causes for the under-representation of women in STEM professions have been debated.  Several 

areas of explanation have been explored and include biological and socio-cultural causes, with a 

multi-causal explanation being the most likely (Stoet & Geary, 2013).  Some hypothesize this is 

due to poor education of STEM.  Criticisms include a lack of focus on high achieving students, 

unenthusiastic educators of STEM, teachers who lack proper training, poor systems of support 

for STEM education, and antiquated STEM curriculums.   

McGraw, Lubienski, and Strutchens (2006) reviewed the United States National 

Assessment of Educational Progress (NAEP) data from 1990 to 2003.  The authors examined 

achievement trends in mathematics as they related to sex, race/ethnicity, and socioeconomic 

status.  Specifically, they investigated whether gender gaps maintained from 1990 to 2003, 

whether gender gaps in mathematical achievement changed by mathematical strand (numerical 

operations, geometry, etc.) and achievement level; and whether males and females differed in 

their attitude toward mathematics.  Results indicated a small, but statistically significant, and 
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persistent difference in mathematical achievement between male and female mathematical 

achievement from 1990 to 2003.  It is noteworthy that gender differences remained consistent 

despite overall improvements in both male and female mathematical achievement in over a 

decade of data.  The researchers found males outperformed females in four of the five 

mathematical strands.  Negligible differences were observed between low achieving males and 

females (10th percentile and below).  However, the achievement gap increased directly with 

achievement, with the largest achievement gap occurring between the 75th and 90th percentiles.  

This suggests it is unlikely for sex to play a significant role in mathematical achievement for 

students who demonstrate mathematical deficits in math.  However, it may be more relevant in 

students who are high achieving.   

Stoet and Geary (2013) analyzed a decade of Programme for International Student 

Assessment (PISA) data to further investigate sex differences in mathematics and reading 

achievement.  The PISA is funded by the Organization for Economic Co-Operation and 

Development and includes close to 1.5 million students from 75 different countries.  The 

assessment content is the same for all countries and focuses on the problem-solving and 

application skills of mathematics, reading, and science.  Similar to McGraw, Lubienski and 

Strutchen’s (2006) findings, results of this analysis showed small but stable sex differences in 

mathematics performance across the four administrations of the PISA.  The difference between 

male and female achievement became more pronounced among students who are high achieving 

and statistically insignificant among students who low achieving.  These findings are in contrast 

with Else-Quest, Hyde, and Linn’s (2010) meta-analysis of TIMSS and PISA data, who found 

gender difference in math achievement to be negligible.  
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Scheiber, Reynolds, Halovsky, and Kaufman (2015) challenged the significance of the 

achievement gap in their study examining the data gathered from the Kaufman Test of 

Educational Achievement – Second Edition, Brief Form (KTEA-II Brief) normative sample.  

The researchers included all data from students in 1st through 12th grades, 793 females and 781 

males ranging in age from 6 to 21.  The results did not yield a significant difference between 

math achievement in males and females, in contrast to the results of a PISA and other 

researching suggesting a significant sex gap (McGraw et al., 2006; Stoeb & Geary, 2013).   

Hyde, Lindberg, Linn, Ellis, and Williams (2008) analyzed gender differences in 

mathematical achievement on state-administered academic achievement tests.  The researchers 

requested gender and performance data from all 50 states, ten of which supplied data.  After 

comparing data from participating states with NAEP data, it was concluded the ten states 

constituted a representative sample of the United States.  Effect size for gender differences in 

mathematics was found to be insignificant (Scheiber et al., 2008).  A meta-analysis completed in 

1990, yielded similar results (Hyde, Fennema, Ryan, Frost, & Hopp, 1990).  The authors 

reviewed studies from 1967 through 1988 that focused on sex differences in math and attitude 

toward math.  The authors concluded the differences in mathematical performance and attitude 

toward math between males and females were small.  The only substantial difference between 

male and females identified in this meta-analysis was in the stereotyping of math as a male-

dominate domain (Hyde et al., 1990).  This suggests that differences in male and female 

mathematical performance is rooted in a perception of mathematical achievement rather than an 

actual achievement gap. 

Given the conflicted findings of mathematical differences between males and females, it 

is unclear whether a sex gap in mathematical achievement exists.  Therefore, sex is included in 
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this study to determine if it is a contributing factor to the prediction of PSSA-M performance 

above and beyond that provided by the MBSP-C measure.   

Socio-Economic Status and Math 

According to the NAEP, a significant number of children from low-income homes do not 

obtain basic levels of mathematical proficiency (NAEP, U.S. Department of Education, 2015).  

While the United States has demonstrated overall improvements in mathematical skills based on 

the Trends in International Mathematics and Science Study (TIMSS), rates of growth are not as 

strong among some student populations (Aud, Fox, & KewalRamani, 2010).  Math education in 

the United States is described as being overdetermined.  According to the National Resource 

Council (2002), this happens when, “a large number of pressures exert forces on these systems, 

making them remarkably stable and resistant to change.” (p. 33).  Students from low SES homes 

and students with disabilities are among these more resistant populations.   

This is especially concerning given that income achievement disparities have increased 

over recent years (Reardon, 2013; Reardon & Bischoff, 2011).  Analysis of state-mandated 

academic achievement testing data suggests the achievement gap between children in low-

income families and those in high income families has grown over the past three decades.  It is of 

substantial relevance that an achievement gap already exists when students enter kindergarten 

and remains relatively stable as they progress through school.  This suggests that the academic 

achievement gap between students in low- and high-SES is the result from out-of-school socio-

economic factors rather than school practices and policies (Reardon, 2013).   

Reardon (2013) examined the data of approximately 25,000 students from kindergarten to 

eighth grade made available through the Early Childhood Longitudinal Study-Kindergarten 

Cohort (Tourangeau et al., 2009).  The authors found that while students were in school, the 
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academic achievement gap between children in low- and high-income homes decreased.  

However, the gap was re-established over summer months when children are not in the school 

setting.  It is recommended that schools allocate additional resources to provide early 

intervention to students while in kindergarten and first grades because of the self-perpetuating 

nature of achievement gaps.   

Bachman, Votruba-Drzal, Nokali, and Heatly (2015) explored the impact of SES on 

opportunity to learn procedural and conceptual math skills in elementary schools.  The 

researchers used a robust amount of longitudinal data (N = 1,364) from multiple sites to examine 

the impact of SES on opportunities to learn and practice math while in elementary school.  The 

authors did identify significant SES disparities in math achievement in first grade which 

decreased slightly but remained present and significant through fifth grade.  It was hypothesized 

by the authors that students in low income families experienced less opportunity for 

mathematical learning in the home environment.  It was further hypothesized that students in low 

income families receive less opportunity for high-order and conceptual math instruction, but high 

exposure to basic, procedural instruction in the school setting, which would perpetuate SES 

achievement disparities.   

This hypothesis, however, was not supported by the data.  The Bachman et al. (2015) 

found that students from low SES families received comparable or more high-order, conceptual 

instruction than their middle- to higher-SES peers.  In complete contrast to the hypothesis, the 

authors concluded children in low-income families, especially with parent or caregivers who are 

less educated, would benefit from increased procedural instruction, especially of calculation 

skills.  The impact of these findings on the present study is twofold.  First, it supports the need to 

determine what impact SES as on future math outcomes.  Secondly, it supports the need for early 
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identification and intervention for students who demonstrate math computation deficits.  This 

can be accomplished through multi-tiered educational models such as MTSS.   

Given these findings, the present study will look at the amount of variance in academic 

achievement that can be accounted for by a student’s SES.  If a significant amount of variance 

can be attributed to SES, school systems may be able to provide additional academic support to 

minimize the impact of SES on learning outcomes through additional intervention.  As this study 

suggests, intervention should target summer months for substantive intervention for students 

from low SES environments. 

Multi-Tiered Systems of Support 

MTSS is a data based decision-making model designed to support the needs of all 

students with a dynamic problem solving approach.  Initially, MTSS models were commonly 

referred to as Response to Intervention (RTI).  However, it is important to clarify RTI is a 

process used to determine whether or not a student has a specific learning disability and is in 

need of specially designed instruction, requiring an Individualized Education Program (IEP; 

Kovaleski, VanDerHeyden, & Shapiro, 2013).  RTI is the preferred method for special education 

identification within MTSS models, but is not the framework itself.  This has resulted in some 

confusion of terminology within school districts and communities.  The legislation that validated 

RTI as a method to qualify students for special educational services, also limited its scope for 

many educators: The term RTI became synonymous with special education and the identification 

of specific learning disabilities.  Therefore, the field has adopted the term MTSS to describe the 

system-wide model (Walker & Shinn, 2010).   

MTSS is defined as “a multicomponent, comprehensive, and cohesive school-wide and 

classroom-based positive support system through which students at-risk for academic and 
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behavioral difficulties are identified and provided with evidence-based and data-informed 

instruction, support, and intervention” (Stoiber, 2014, p. 45).  Multi-tiered models are 

characterized by tiered instructional practices and structure, with instructional intensity 

increasing with each tier.   

The majority of MTSS models consist of three tiers, with Tier 1 being the foundation.  

All students receive the academic, social, and behavioral curriculum provided in Tier 1.  

Instruction in Tier 1 is differentiated, high quality, and utilizes evidence-based practices.  

Approximately 80% of students should be successful in Tier 1 (Kettler et al., 2014).  The more 

effective Tier 1 is, the fewer students in need of the intensity of intervention provided at Tier 2 or 

Tier 3 levels (Walker & Shinn, 2010).  Universal screening data, in addition to formative and 

summative assessment data, are used to make decisions regarding movement within tiers at this 

initial level (Albers & Kettler, 2014; Kovaleski & Pederson, 2014; Parisi, 2014; Stoiber, 2014).  

Universally screening students is a cornerstone of multi-tiered service delivery models.  Some 

scholars suggest that without universal screeners, multi-tiered systems are another example of a 

wait-to-fail education model (Berninger, 2006).   

Tier 2 provides additional academic, social, and behavioral supports to students who do 

not meet performance targets within Tier 1 (Johnson, Carter, & Pool, 2012).  Approximately 

15% of students require Tier 2 services (Kettler et al., 2014).  Interventions provided in Tier 2 

are generally designed to target specific skill deficits and are provided in a small group setting in 

or out of the general education classroom (Johnson et al., 2012).  Duration of Tier 2 interventions 

can vary significantly, but generally occur 3-5 times per week for 30 to 40 minutes for 6 to 20 

weeks (Stoiber, 2014).  Structured, explicit interventions are recommended at Tier 2 because 
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they have been shown to significantly improve outcomes for struggling learners (Johnson et al., 

2012). 

Approximately 5% of students will not respond to Tier 2 instruction and require Tier 3 

levels of intervention (Kettler et al., 2014).  Tier 3 represents the most intensive set of 

interventions and supports for students and in some models is synonymous with special 

education services (Johnson et al., 2012).  In other models, Tier 3 is not considered special 

education but rather the most intensive interventions available in the general education setting 

(Walker & Shinn, 2010).  Tier 3 interventions occur in addition to the general education 

instruction (i.e., Tier 1) due to an increased need for repetition and opportunities for practice 

(Denton, 2012).  Tier 3 interventions have a low teacher-to-student ratio as a way to increase 

instruction intensity.  The ratio of teachers to students is typically 1:3 but can be as low as 1:1 

(Denton, 2012; Stoiber, 2014).  Students in Tier 3 receive intervention from 30 to 120 minutes, 5 

days a week for 10 to 30 weeks (Stoiber, 2014).  Tier 3 intervention is typically provided by 

qualified general education teachers, special education teachers, and reading specialists (Denton, 

2012; Kovaleski et al., 2013). 

When differentiating between instructional tiers in a MTSS model, the word intensity is 

frequently used.  There are several ways to manipulate the intensity of instruction.  Intensity can 

be increased or decreased based on the format of the intervention being used.  For example, a 

scripted intervention program is much more intense than a less structured intervention such as 

repeated readings or a drill sandwich.  Student-teacher ratio, duration of intervention, and 

frequency of intervention are other common means of changing intervention intensity. 

 Regardless of intensity level, interventions implemented within MTSS models should be 

evidence-based or empirically-supported.  Empirically-based interventions have a sound body of 
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scientific research to support their effectiveness.  Implementation of empirically-based 

interventions require treatment fidelity, which means educators apply intervention programs or 

instructional practices in the same manner as the research validating their effectiveness.  

Interventions that are evidence-based demonstrate substantial positive effect size, outcomes that 

can be replicated by others, and gains that are maintained over time (Walker & Shinn, 2010).  

Evidence-based interventions are those whose specific procedures and materials have not been 

validated via scientific study.  However, evidenced-based interventions use strategies or 

techniques that have been validated through empirical research.     

One potential challenge to implementing MTSS systems is determining which students 

should receive what supports and the duration of these supports (Stoiber, 2014).  As previously 

noted, MTSS focuses on data-based decision-making.  Instructional decisions and movement 

through tiers is based on student data.  Students are universally screened in order to identify who 

may be at-risk for poor learning outcomes and could benefit from additional academic and/or 

behavioral intervention.  Once students begin intervention, progress monitoring data provide 

educators with information regarding students’ response to intervention.  It is recommended that 

schools develop data analysis teams to engage in systematic data analysis teaming to aid in 

instructional decision making and movement between tiers (Kovaleski & Pederson, 2014; Nellis, 

2012).    

Data analysis teams use universal screening data, in conjunction with other available 

data, to guide large-group instructional planning.  Data analysis teams typically meet a minimum 

of three times a year, after tri-annual (fall, winter, and spring) universal screening measures are 

administered.  Data are disseminated and reviewed prior to data analysis meetings.  Meetings 

begin with a review and summary of universal screening data.  First, areas of weakness within a 
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grade-level are identified and goals are set for the next universal screening administration.  Once 

weaknesses are identified and goals are set, the team generates a list of possible Tier 1 strategies 

to improve student outcomes.  The most appropriate strategies to target deficit areas are selected 

and a plan for implementation and support is developed.  At this point, the data analysis team 

identifies students who are potential non-responders, or students who are likely to need more 

intensive support than Tier 1 strategies (Kovaleski & Pederson, 2008).   

At this point, data analysis teams look at individual student data as opposed to data for an 

entire grade level.  Students with similar areas of need are identified and intervention groups are 

formed.  Similar to data analysis teaming procedures at the Tier 1 level, a list of intervention 

packages is generated, with the team selecting the intervention best suited to the instructional 

needs of the students.  A plan for implementation and progress monitoring is then developed 

(Kovaleski & Pederson, 2014).   

Data analysis teams continue to use existing data when reviewing which students may 

need Tier 3 intensity of instruction.  Data typically available at this level include universal 

screening, local and state assessments, disciplinary referrals, attendance records, and progress 

monitoring data from intervention that may have been provided at Tier 1 and Tier 2 intensities.  

At this point, the data analysis team may also require additional assessment to further support 

instructional planning for individual students.  After additional data are collected, appropriate 

interventions are identified and selected.  A plan for implementation and progress monitoring is 

developed and put into action.  If a student is not responsive to the intensity of intervention at 

Tier 3, the data analysis team may recommend an evaluation to determine eligibility for special 

education services (Kovaleski & Pederson, 2014).   
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MTSS recognizes the need for a continuum of services to meet the educational needs of 

all students with early, proactive intervention.  There is an acknowledgement that not all students 

are successful within the core curriculum, but lack of success can be addressed outside of special 

education via increased intensity of intervention.  MTSS attempts to address systemic program 

issues as opposed to attributing poor learning outcomes to student deficits (Ikeda, Paine, & 

Elliott, 2010; Walker & Shinn, 2010).  It is seen as a vehicle for educators to embed effective, 

research-based academic and behavioral programs and utilize financial and personnel resources 

more efficiently to improve student outcomes (Ikeda et al., 2010).   

Benefits of MTSS include providing early, research-based intervention instead of waiting 

until students are performing significantly below age or grade expectations before receiving help, 

or a wait-to-fail model.  A related benefit is decreasing the number of students receiving special 

education services by meeting the needs of most students within the general education setting.  

MTSS methods decrease the likelihood of students who are culturally diverse, are from low 

socio-economic environments, and / or are non-native English speakers from being over-

identified in special education (Klotz & Canter, 2007).   

For MTSS models to function efficiently and improve student outcomes, universal 

screening instruments with adequate technical and classification accuracy must be administered 

to all students.  There is a plethora of research to support universal screening for reading within 

MTSS.  However, MTSS is not meant to be reading-centric, but to support the whole child.  

Therefore, more research is need in universal screening for math, writing, and social/emotional 

deficits to provide early proactive intervention.  The focus of this study is to add to the research 

base regarding the predictive validity of a math computation universal screening instrument.  
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Secondly, this study will provide information regarding the impact of SES and sex on 

mathematical achievement.   

Response to Intervention  

RTI is a tiered process to determine eligibility for special education services.  The scope 

of RTI is limited to the identification of students for special education services.  RTI gained 

legislative support with the 2004 revision of IDEIA.  It identified RTI as a method for 

determining the presence of a specific learning disability (SLD) and need for special education 

services.  This grew out of a recognition that the ability-achievement discrepancy model was not 

an effective method for identifying SLD (Gresham, Reschly, & Shinn, 2010).   

The common alternative to an RTI model is the discrepancy model (Glover & Albers, 

2007).  The ability-achievement discrepancy model has been appropriately dubbed the wait-to-

fail model because it is neither predictive in nature nor supportive of early, proactive 

intervention.  First, this method of identifying students for support works against early proactive 

supports, which have been shown to improve student outcomes.  Students need to be performing 

significantly below age or grade achievement levels prior to referral to qualify for support 

services, perpetuating learning problems by blocking access to appropriate intervention (Glovers 

& Albers, 2007).  Secondly, there is not a universal or systematic method of referral under the 

ability-achievement model.  Schools are inconsistent in applying discrepancy model rules when 

determining which students have a specific learning disability resulting in an over or under-

identification of students requiring special education services (Gresham et al., 2010).  In addition 

to blocking access to intervention and inconsistencies regarding criteria of a SLD, research 

exploring the effectiveness of the ability-achievement model does not validate it as an accurate 

means of identifying SLD.  Studies examining the classification accuracy of the ability-
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achievement model indicate a very high rate of false positives (33% to 45%; Gresham et al., 

2010).  Despite this, the ability-achievement method remains prevalent in practice. 

The underpinnings of RTI for identification of an SLD focus on the effective use of the 

school system to provide proactive, preventative, and early interventions as opposed to the wait-

to-fail model.  Members of the multi-disciplinary evaluation team review data from multiple 

measures given over time, including progress monitoring data, to determine if the student 

demonstrates dual discrepancies.  Dual discrepancies require that a student demonstrates below 

expected grade or age level performance levels in addition to a slow rate of improvement or lack 

of progress in relation to peers (Kovaleski et al., 2013; Lichtenstein, 2014).  Students who 

demonstrate a low level and rate of academic growth in relation to same age and/or grade peers 

are considered as having a dual discrepancy.  Students who demonstrate a dual discrepancy 

frequently have more severe academic deficits than children with an IQ-achievement 

discrepancy and are more resistant to intervention.  However, children, even those with dual 

discrepancies, have been shown to benefit from early intervention when identified as at-risk with 

universal screening practices (Speece, Case, & Molloy, 2003; VanDerHeyden, 2011).  

Universally screening students in order to provide early intervention is a cornerstone of both 

MTSS and RTI. 

Universal Screening 

 The importance of early intervention for academic skills, social/emotional development, 

and behavior difficulties has been clearly identified.  Yet there are persistent inconsistencies 

about how to best identify students who may be at-risk and how to best address these deficits.  

Prior to widespread acceptance of problem-solving models in education, such as MTSS, teacher 

referral was the primary means by which students were nominated for additional intervention.  
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While teachers provide valuable information regarding how a student functions in the classroom, 

there is little empirical evidence to support teacher referral as the sole method to identify 

students who need additional intervention (Elliott, Haui, & Roach, 2007).   

To address the inefficient and ineffective teacher-referral process, educational systems 

borrowed from medical models and adopted universal screening practices for a more systematic 

and comprehensive approach to early identification of students in need of additional intervention.  

Universal screening is defined as a “process that generally consists of administering measures or 

collecting other data to allow broad generalizations to be made regarding the future performance 

and outcomes of all students, both at the individual level and at the group level” (Albers & 

Kettler, 2014, p. 121).  The practice of universally screening students is considered an essential 

requirement to provide students at risk for emotional, behavioral, and academic difficulties 

access to early intervention (Glover & Albers, 2007).  Educational decisions made by child study 

or data analysis teams that allow students early access to academic, social, or emotional 

interventions are more likely to be consistent when screenings are given universally, or to all 

students (Kettler, Glover, Albers, & Feeney-Kettler, 2014).  

Function of Universal Screening 

 The function of universal screening is to inform educational systems and educators about 

students’ academic and behavioral needs and then intervene on those needs.  Universal screening 

data serve this function in two ways.  Screening data are used first, at an individual level, to 

identify students who would benefit from additional intervention or increased intensity of 

instruction.  Second, universal screening data are used to evaluate the effectiveness of a system 

and aid in the identification of curricular areas that may need more robust instruction, or areas 

which require a higher quality of instruction (Kettler et al., 2014).   
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Within a three-tiered MTSS model, the first step to identifying students who are at-risk of 

not achieving learning goals is to utilize a universal screener.  When used in this capacity, 

universal screening practices identify students for the purpose of proactive intervention rather 

than screening for identification of an already establish deficit.  This shift in practice is focused 

on providing students with the appropriate intensity of instruction in an early, proactive manner 

to minimize or negate long-lasting negative outcomes associated with academic difficulties 

(Albers & Kettler, 2014).   

There is a robust body of research supporting this practice in reading, with well-

established general outcome measures, in stark contrast to a lack of agreed upon general outcome 

measures in mathematics (Jenkins, et al., 2007; Mazzocco, 2003).  As education systems 

successfully implement multi-tiered intervention programs in reading, more attention has been 

placed on establishing similar procedures in math (Clarke, Haymond, & Gersten, 2014; Clarke, 

Nese, et al, 2011; Gersten, Jordan, Flojo, 2005; Methe, Briesch, & Hulac, 2015).  This has 

proved difficult given math’s interwoven conceptual knowledge skills, non-sequential 

development, and lack of clearly defined general outcome measures and is compounded by 

significant variations in curriculums and instructional strategies (Clarke et al., 2011; Kelley, 

2008).  Despite these challenges, some promising developments have occurred in recent years 

regarding how to proactively identify students in need of more intense math instruction within a 

multi-tiered service delivery model.   

A secondary function of universal screening is to determine the effectiveness or benefit 

of the curriculum or instructional practices for the majority of the student population.  Universal 

screening measures are designed to be administered to all students to identify those who may be 

at risk and in need of intervention but also evaluate the effectiveness of the core curriculum 
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(Albers & Kettler, 2014).  When used as part of an MTSS, it is assumed the instruction received 

by students in Tier 1, or the core curriculum, is of high quality and differentiated to student needs 

(Jenkins, et al., 2007).  MTSS models encourage on-going evaluation of core practices.  

Universal screening data are used in conjunction with other available data to assess the efficacy 

of the core curriculum and instruction.  Similarly, these data can be used to identify potential 

deficits and develop a systems-level plan to remediate those deficits.  After implementation of a 

systems-level plan, universal data are used to help determine its effectiveness (Parisi et al., 

2014).   

Teachers and interventionists are also able to employ universal screening data as a 

starting point for differentiating instruction (Albers & Kettler, 2014).  In addition to laying a 

strong instructional foundation for all students, high-quality core instruction includes ongoing 

opportunity to increase the intensity of instruction for students who may be struggling and 

opportunities for students who are high achieving to be accelerated (Clarke, Doabler, & Nelson, 

2014).  Teachers are able to use data from the fall universal screening and spring of the previous 

year to start differentiating Tier 1 instruction early in the academic year by determining which 

students may benefit from an increased intensity of instruction within the classroom.  

Interventionists are able to use universal screening data, along with other sources of information, 

to determine what intervention will be a good instructional match for a student.       

Features of Universal Screening Measures   

While screening measures can vary significantly based on what is being monitored, there 

are several consistent features of universal screening measures.  Universal screening data are 

used for systemic program evaluation or to determine if instruction is effective in a class, grade, 

school, or district and to identify students who would benefit from a greater intensity of 
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instruction (Albers & Kettler, 2014).  From a functional standpoint, universal screening measures 

should lend themselves to group administration a minimum of three times per year (Albers & 

Kettler, 2014; Kettler et al., 2014; Kovaleski & Pedersen, 2014).     

High quality universal screening instruments should reflect general outcome measures 

such as state and/or national curricular standards, be sensitive to small increments of change over 

time, be capable of differentiating between students performing within expected ranges and those 

who are not, and be easily administered to the majority of the student population or be developed 

with universal design (Anderson, Lai, Alonzo, & Tindal, 2011).  Assessments developed with 

universal design take into consideration the characteristics of all test takers, are composed of 

explicit constructs and bias-free content, are accessible, allow for accommodations, have simple, 

clear administration and scoring procedures, use appropriate readability, and utilize legible text 

and graphics (Anderson et al., 2011).  Another important but often overlooked requirement for 

universal screening instruments is the data gathered should be easily disseminated to and 

understood by school personnel for effective data-analysis teaming (Kovaleski & Pedersen, 

2014; Messick, 1995; Nellis, 2012).    

In addition to usability and appropriateness for intended use, technical adequacy is an 

essential requirement of a universal screening tool.  Appropriate technical adequacy of an 

assessment tool for decision-making purposes is one of the preliminary criteria that should be 

considered when evaluating an instrument for the purpose of universal screening (Christ, 

Johnson-Gros, & Hintze, 2005; Glover & Albers, 2007; Jenkins, Hudson, & Johnson, 2007).  

Technical adequacy for purposes of universal screening encompasses criterion validity, 

classification accuracy, sensitivity, specificity, and ability to measure growth over time (Glover 

& Albers, 2007; Jenkins et al., 2007; VanDerHeyden, 2010, 2011).   
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The paradigm shift from a reactive to a proactive approach toward student learning and 

behavioral difficulties are reflected in the use of universal screening data.  Previously, these data 

were used to identify deficits in curriculums and individual students.  The data are now being 

used as a method for identifying students who may struggle academically, socially, or 

behaviorally in the future to provide early intervention and for matching those students with the 

appropriate intensity of instruction (Albers & Kettler, 2014; Kettler et al., 2014; Kovaleski & 

Pedersen, 2014).  Universal screening instruments provide preliminary information regarding 

potential skill strengths and weaknesses.  Universal screening measures are frequently used as 

the first gate in a multiple-gate or gated screening system.    

Gated Evaluation System 

 Gated evaluation systems, also referred to as multiple-gating, is defined as a “generic 

process involving multiple assessments that cost efficiently identify a subset of individuals from 

a larger pool of target participants with a combination of methods and measures generally 

arranged in sequential order.” (Walker, Small, Severson, Seeley, & Feil, 2014, p. 47).  For 

example, when oral reading fluency probes are administered as a universal screening tool, 

fluency and accuracy data are collected.  These initial data could be used to separate students 

into different intervention groups or determine what Gate 2 assessment should be utilized.   

Recent research has suggested promising results when using curriculum-based measures 

(CBM) as the first step in a gated evaluation system.  Gated evaluation systems have been 

proposed as one potential solution to the problem of false positives (Fuchs, et al., 2011; 

VanDerHeyden, 2010, 2011).  It is recommended that additional universal screening measures be 

introduced only when relevant and can improve identification accuracy (VanDerHeyden, 2013).  
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This procedure may be especially relevant when identifying students in need of math 

intervention because of the interwoven skills and non-sequential nature of mathematical learning 

(Missall et al., 2012).   Fuchs et al. (2011) explored the use of a two-stage screening to identify 

students with math problem solving difficulties.  The authors first administered a low-cost group-

administered universal screener in math followed by a Dynamic Assessment (DA).  DA has been 

shown as a strong predictor of word problem skills (Seethaler et al., 2011).  Dynamic assessment 

“involves structuring a learning task, providing feedback or instruction to help the examinee 

learn the task, and indexing responsiveness to the assisted learning experience as a measure of 

the examinee’s capacity to profit from future instruction” (Seethaler et al., 2011, p. 224).  The 

researchers added a DA to the fourth year cohort of a previously established sample from a 

longitudinal study already in process.  The specificity increased from 48.0% to 70.4% with the 

addition of a second screening tool.  Sensitivity remained consistent at 87.5% (Fuchs et al., 

2011).  Therefore, these findings support the use of a gated evaluation system.   

High Stakes Testing as Predictor Criterion   

For universal screening data to be meaningful, they have to correlate with a relevant 

future outcome such as a high-stakes state-mandated academic achievement test (Clarke et al., 

2014; VanDerHeyden, 2010, 2011).  No Child Left Behind Act of 2001 (NCLB) and Individuals 

with Disabilities Education Improvement Act of 2004 (IDEIA) have acted as catalysts for 

educational reform in the United States that was initiated 20 years prior with the 1983 

publication of A Nation At Risk by the Commission on Excellence in Education.   

NCLB, a reauthorization of the Elementary and Secondary Education Act (ESEA), was 

the largest federally-funded education program in the United States.  The majority of funds were 

designated to Title 1 programs, which focus on reducing the impact of poverty on learning.  In 
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addition to Title 1, NCLB set standards for teacher quality, instruction of English Language 

Learners, school safety, assessment, and educational innovation.  The legislative guidelines in 

NCLB have resulted in increased accountability within school systems and the adoption by many 

states of the rigorous National Common Core curriculum.   

NCLB was re-authorized and called Every Student Succeeds Act (ESSA) in 2015.  

Similar to NCLB, the focus of ESSA is providing all students with a high quality education.  

ESSA eliminates annual yearly progress as an accountability measure and permits states to 

determine their own measure of accountability.  Subsequently, states are then able to direct more 

support toward the lowest-performing schools, schools with a high incidence of dropout, and 

schools with achievement gaps.      

ESSA mandates that states administer an annual reading and mathematics assessment in 

grades three through eight and once during high school.  Science is assessed once while in 

elementary school, middle or junior high school, and high school.  While one intention of ESSA 

is to decrease the amount of time students spend being assessed, state assessments continue to be 

mandated.  Ideally, the state academic achievement tests reflect the academic skills that are 

valued by the federal and state education system, local community, local education system, 

families, and students.  The state assessments are direct measures of the required standards.  

Therefore, they are important indictors of how well students are mastering content the state has 

determined to be valuable academic skills.  Because state-mandated academic achievement tests 

are considered high-stakes and the direct measure of critical learning skills, they are often used 

as predictor criterion for the validation of universal screening instruments. 

The primary intended consequence of high-stakes testing is to improve student academic 

achievement and overall student outcome.  This results in an increased alignment between 
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instruction and standards; improved instructional efficiency; more pointed resource allocation; 

heightened student, teacher, and parent motivation to perform, teach, and support; an increased 

reliance on evidence-based instructional methods; and reducing the achievement gap between the 

majority of students and underserved or low-achieving students (Braden & Schroeder, 2004). 

Braden and Schroeder (2004) identified several intended and unintended consequences of 

high-states testing.  Unintended consequences of high-stakes include a narrow curricular focus, 

academic demoralization in low performing schools, test anxiety in students and school 

personnel, cheating, inappropriate resource allocation, and use of a single data source to make 

high-stake educational decisions.  High-stakes test results may impact grade promotion, class 

placement, graduation, and teacher performance ratings, hence the term high-stakes testing 

(Braden & Tayrose, 2008).  While the impact of ESSA is yet unknown, the intention is to 

decrease some of the negative unintended consequences of state-mandated academic 

achievement testing. 

In order to further mitigate negative consequences of high-stakes tests, Braden and 

Schroeder (2004) suggested using test results to help inform instruction for subsequent years.  

They further recommended the use of sound research methods when making decisions regarding 

curriculum, instruction, and intervention and ensuring opportunities to learn.  These practices 

increase the probability of the positive intended consequences of high-stakes testing (Braden & 

Schroeder, 2004; Braden & Tayrose, 2008).  A universal screener with high predictive validity 

with high-stakes testing will help students to access supplemental intervention while continuing 

to participate in the general education curriculum.   

The second piece of legislation that has played a significant role in education reform is 

the 2004 reauthorization of IDEIA, originally known as the Education for All Handicapped 
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Children Act of 1975.  This reauthorization aimed to improve early intervention services and 

pre-referral intervention programs (Braden & Tayrose, 2008).  This is represented by the 

legislative support provided in IDEIA for the use of a multi-tiered system as a method of 

educational service delivery and to identify students as being in need of specially designed 

instruction.  IDEIA also re-directed funds from other programs in order to provide fiscal backing 

for pre-referral programs.   

IDEIA required an increased inclusion of students with disabilities in state accountability 

systems (Braden & Tayrose, 2008).  The inclusion of students with disabilities in state 

accountability data served as a motivating factor for schools to improve the quality of education 

students identified as needing specially designed instruction received.   

Large scale analysis of strengths and needs of STEM instruction in this country, which 

has been facilitated in part by high stakes testing and the legislation that supports them, have 

consistently shown a need for and benefit of ongoing formative assessment to drive instructional 

decisions in math (Gersten et al., 2009; NMAP, 2008).  These government-driven changes have a 

reciprocal relationship with a paradigm shift in school systems to move toward a more problem-

solving, differentiated models of instructional delivery.  These changes aim to ensure high 

quality education for all students, one driving the other.   

Potential barriers to universal screening.  Parisi, Ihlo, and Glover (2014) identified 

common barriers to effective universal screening practices.  Common barriers include a lack of 

professional development with school personnel about how to use screening data to link at-risk 

students with appropriate interventions and engage in program evaluation.  In addition to 

providing professional development to staff, Parisi et al. (2014) suggest that school 

administrators and general educators should be included on the data analysis team.  Successful 
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implementation of a multi-tiered model without the support of administration/leadership to 

advocate for the collection and use of universal screening data is very difficult.  Members of 

leadership teams must be well-trained in data-based decision-making and should include general 

education teachers, specialists, and special education teachers.  Excluding general education 

teachers from data analysis teams perpetuates the belief that students need special education to 

be successful and takes away from a culture of shared ownership regarding the performance of 

all students.   

Waiting to employ universal screening data until all staff are committed to a multi-tiered 

service delivery model is another potential barrier.  Guidelines for introducing MTSS models 

suggest securing the buy-in of 80% of school personnel prior to implementation.  However, 

universal screening instruments can be introduced prior to high levels of staff support.  When 

done properly, universal screening procedures can increase staff support of multi-tiered service 

delivery models (Parisi et al., 2014).  One possible solution to mitigate these barriers is the 

development of a data-analysis team to engage in systematic review of student data, commonly 

referred to as data-analysis teaming (Kovaleski & Pedersen, 2008; Kovaleski & Pedersen, 2014; 

Nellis, 2012).  Data analysis teams are composed of “teachers, school psychologists, 

administrators, and other educators who meet to conceptualize how data inform instructional 

decision making” (Kovaleski & Pedersen, 2014, p. 100).   

A potential barrier to implementation of universal screeners is the high rate of false 

positives (Fuchs et al., 2011; Mazzocco, 2003; VanDerHeyden, 2010, 2011, 2013).  False 

positives identify students as being at-risk when they would develop proficient academic skills 

without supplemental intervention.  High rates of false positives create financial and personnel 

strain and decrease the intensity of intervention for students who are truly at-risk, which is why 
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technical adequacy of universal screening tools is so paramount (Fuchs et al., 2011; 

VanDerHeyden, 2010, 2011).  Despite these criticisms, universal screening practices are 

preferred over conventional methods used to identify students for additional intervention, such as 

teacher referral (Fuchs et al., 2011).  Universal screening data are more systematic and 

demonstrate better reliability and validity than conventional methods, resulting in more accurate 

identification of students who may be at-risk for academic difficulties.   

A high percentage of students failing to meet performance benchmarks on a universal 

screening measure indicates a systemic problem, not a student-specific problem (Albers & 

Kettler, 2014; Kettler et al., 2014).  When school systems chronically identify a large percentage 

of students as being at-risk, system-wide interventions are recommended over individual student 

interventions.  When systemic problems have been identified, universally screening for 

individual deficits may no longer be functional.   

VanDerHeyden (2013) cautioned against universally screening all students when other 

data sources indicate a majority of students are demonstrating academic, emotional, and/or 

behavioral difficulties.  In educational systems that have a large percentage of students identified 

as at risk, universal screening systems are no longer as effective and efficient.  Typically, when 

over 20% of the student population is demonstrating a need, it is considered a systemic deficit 

and systemic interventions are recommended.  The use of threshold decision making is promoted 

to take into account contextual factors that impact student outcomes.   

Threshold decision-making models are prevalent in the medical field but have not yet 

translated into educational practice.  Medically, threshold decision-making is used to determine 

whether screening and/or intervention should be initiated based on the probability of being 

asymptomatic, probability of negative side effects for any given age for participation or lack of 
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participation in screening, and probability of death (Hoffman, Wilkes, Day, Bell, & Higa, 2006).  

According to VanDerHeyden (2013), three options should be considered when making decisions 

about the need for intervention:  

(a) to provide intervention without screening, (b) to withhold intervention without testing, 

(c) to conduct the test to determine whether the intervention is needed for the ‘in-the-

middle’ students or students who are neither clearly at-risk or clearly not at-risk. (p.406)  

In an education setting, threshold decision-making would require educators to consider 

the probability of a false negative, probability of a false positive, probability of a false result for 

students who will not fail (specificity), benefit of intervention for students who will fail, risk of 

intervention for students who will not fail, and risk-of-test.  Please refer to Figure 2 for a visual 

representation of this model.  In this model, screening is only conducted with students for whom 

it is unsure whether or not they are in need of intervention.   

Potential benefits of this model include less strain on school resources and instructional 

time to conduct universal screenings with all students and decreased risk of flooding Tier 2 

intervention with false positives.  Potential downfalls include loss of universal screening data to 

evaluate the effectiveness of the educational system and potential for false negatives 

(VanDerHeyden, 2013).  Empirical and longitudinal research is need to determine whether or not 

threshold decision-making is applicable within an educational setting. 

  Test Threshold  Treatment Threshold  

 

 
0%     Do Nothing              Conduct Assessment       Provide Intervention         100% 
 

Figure 2.  Representation of logic behind threshold decision making 
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 While more research is being conducted into alternative methods, CBM are the most 

prevalent universal screening tools.  CBM “represents a set of standardized and specific 

measurement procedures that can be used to quantify student performance in the basic skill areas 

of reading, spelling, mathematics computation, and written expression” (Hintze, Christ, & 

Methe, 2006, p. 51).  

Curriculum Based Measures as Math Universal Screeners 

When discussing high-stakes testing and assessment, it is important to be cognizant of the 

multifunctional role of assessments.  Assessments serve one or more functions.  They can be 

used for placement or selection, accountability purposes, diagnosis, and in the support of 

learning (Berry, 2008).  Within the current high-stakes educational climate, it is beneficial for 

school systems to choose assessment instruments that serve multiple functions to minimize the 

amount of instructional time lost to assessment.   

In the literature, the terms CBM and universal screener are often used interchangeably.  

CBM refers to a type of assessment, while universal screener refers to how that assessment is 

functioning or being used.  The unique characteristics of CBM make them ideal for use as a 

universal screening instrument.  CBM are developed in direct reflection of local curricula and 

measure multiple math constructs (Deno, 1985).  Unlike classroom-based assessments or 

curriculum-embedded assessments (e.g., chapter or unit tests), the same constructs are assessed 

over time to allow for measurement of growth as opposed to the extent of skill mastery (Fuchs, et 

al. 2005).  Curriculum-based measures have been shown to be a reliable and valid method for 

assessing a student’s knowledge at any given point of time (Fuchs et al., 2005).  A primary 

function of CBM is progress monitoring of student learning or to measure academic growth over 

time (Codding, Petscher, & Truckenmiller, 2015).   
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Two broad approaches to CBMs have been identified, curriculum sampling and robust 

indicators (Christ et al., 2008; Foegen et al., 2007; Fuchs, 2004; Fuchs, et al., 2008).  Curriculum 

sampling measures represent skills students are expected to learn throughout each school year 

and relate to a specific curriculum (Foegen et al., 2007; Fuchs, 2004; Fuchs et al., 2008).  Christ 

and Vining (2006) differentiate between Curriculum Based Measures of Math (CBM-M) that are 

subskill mastery measures and those that are general outcome measures.  Subskill mastery 

measures are used to assess a specific skill that is expected to be acquired over a brief period of 

time.  The curricular-sampling approach to CBM is an example of subskill mastery measures.  

Curricular-sampling CBM is composed of skills representative of what a student is expected to 

learn by the end of the school year and a direct reflection of students’ curriculum (Fuchs, Fuchs, 

& Zumeta, 2008).   

Robust indicator measures are composed of skills that represent proficiency in 

mathematics but are not representative of a specific curriculum (Christ et al., 2008; Foegen et al., 

2007; Fuchs, 2004).  Robust indicators are considered curriculum-based despite not being tied to 

a particular curriculum because they are intended to measure core competencies which students 

are expected to know at the end of a certain period of time or grade level (Christ et al., 2008).  

Robust indicators are also referred to as general outcome measures.  General outcome measures 

assess students on skills they are expected to master over an extended period of time, such as the 

course of an academic year (Christ & Vining, 2006; Christ et al., 2008).   It is important to note 

that, although the authors refer to math computation as a general outcome measure, there is a 

significant amount of debate in the field regarding what skill sets constitute a general outcome 

measure in mathematics (Mazzocco, 2003).  At the elementary school level, robust indicators 

focus predominately on basic fact fluency.  However, assessment of early mathematical 
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competencies have gained increased attention (Foegen et al., 2007; Lago & DiPerna, 2010; 

Polignano & Hojnoski, 2012).  

CBM-M can be used to assess computation and/or concepts and application skills (Christ, 

Scullin, Tolbize, & Jiban, 2008).  Computation probes assess basic arithmetic skills.  Measures 

can assess multiple skills (addition and subtraction without regrouping) or focus on a specific 

skill (e.g., multiplication facts to 12).  The skills represented on the computation probe should 

reflect the curriculum or specific grade-level skills.  Concept/Application probes focus on the 

application of arithmetic skills to the problem solving process.  They may consist of word 

problems and more complex mathematical operations (i.e., solving for an unknown or 

interpreting charts and graphs).  Probes can be scored as digits correct or correct problems.  

Digits correct scoring has been shown to be more sensitive to growth over time (Stevens-

Olinger, 2014).   

CBM differentiates itself from mastery measurement tools and other forms of curriculum 

based assessments (CBA) in several ways.  CBM assesses students on broad learning objectives 

as opposed to short-term learning objectives (Fuchs, 2004; Hintze, Christ, & Methe, 2006).  

Secondly, CBM assesses students repeatedly on the same set of skills.  Another distinction 

between CBM and CBA is use of standardized administration and scoring procedures.  It is 

important to distinguish between these two instruments because CBM is frequently used as 

universal screeners and CBA is not. 

Clarke et al. (2014) identified two types of established universal screening tools in 

mathematics: single-proficiency measures and multiple-proficiency measures.  CBM can be used 

to evaluate student performance on a specific skills area (single-skill computation measures) or a 

broad range of skills (mixed-skill computation or concept/application measures).  Both types of 
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screening measures have been shown to be good predictors for future math outcomes.  Research 

in the fields of developmental and cognitive psychology supports the use of single-proficiency 

measures.  Single-proficiency measures typically focus on early numeracy and basic arithmetic 

skills.  They are typically brief (1-2 minutes) and easy to administer (Albers & Kettler, 2014; 

Clarke et al., 2014).  Multiple-proficiency measures, contrarily, combine several skills into one 

screening probe (Clarke et al., 2014).  For example, Number Sense Brief (Jordan, Glutting, & 

Ramineni, 2008) combined multiple early numeracy skills, strategic counting, magnitude 

comparison, and number identification into one brief measure.  Preliminary research suggests 

multiple-proficiency measures assess a more comprehensive range of mathematical skills, which 

results in a slightly stronger predictive power than single-proficiency measures (Clarke et al., 

2014).   

Psychometric Adequacy   

There is a growing body of research examining the utility of both single and multiple-

proficiency measures.  Fuchs (2004) identified three stages of programmatic research on CBM.  

Stage 1 revolves around the technical features of each individual or static score.  Stage 2 

investigates the technical features of slope and if growth captured on CBM measure translates to 

increased achievement within the academic domain.  The intent of Stage 3 research is to 

determine the instructional utility of a CBM.  In other words, can the data gathered from that 

particular measure be used to inform instructional decisions resulting in improved student 

outcomes (Fuchs, 2004)?  The majority of research relating to curriculum-based measures of 

mathematics (CBM-M) would be categorized as Stage 1 and to lesser extent Stage 2.   

Within the past decade, more emphasis has been placed on looking at CBM-M from the 

standpoint of instructional utility.  This is in part due to the MTSS/RTI paradigm shift.  



84 
 

Educators are now looking to transfer established RTI reading practices to math instruction, 

especially as MTSS models, which emphasize a cohesive system of instruction, have gained 

increased support.  It is important to note that there is a significant amount of research validating 

CBM in reading at all three stages; however, the depth of research in mathematics is not present 

(Fuchs, 2004; January & Ardoin, 2015).  Another significant factor in this research trend is the 

necessity of a tool being validated at Stage 1 and Stage 2 levels for progress monitoring prior to 

the instructional utility being explored at Stage 3 (Fuchs, 2004).    

The technical adequacy of CBM has recently been revisited as a topic of study and 

concern.  Claims have been made that many students may have been inaccurately identified as 

being learning disabled based on CBM that was not technically sound for educational decision-

making purposes (Methe et al., 2015).  Effective universal screening measures are required to 

demonstrate adequate technical adequacy.  Generally, for universal screening instruments, this is 

defined as having a reliability of .70 or higher, being able to differentiate between different 

groups of students, exhibiting a strong correlation with a criterion measure, and demonstrating 

appropriate levels of specificity and sensitivity.  In an RTI model, CBM can be used as part of 

the eligibility for the special education decision making process.  It is important to note, high-

stakes testing which could possibly result in life-changing special education classification require 

much stronger reliability of .90 or higher (Christ & Nelson, 2014).  The validity of a screening 

instrument is frequently established by correlating the researched instrument with a previously 

established measure.  Correlation coefficients of .40 - .50 or higher are generally considered 

acceptable if the criterion measure has well-established psychometric properties (Burns et al., 

2014).   
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Reliability of CBM.  The reliability of a measure is its ability to be consistent over time, 

across alternate forms and raters.  Types of reliability most relevant to this study and CBM 

include test-retest reliability and alternative form reliability.  Test-retest reliability describes the 

stability of an instrument over time.  For the purpose of universal screening, a correlation of .70 

or higher between two separate administrations of a measure is considered good test-retest 

reliability.  Alternative form reliability is a measure of stability of performance across multiple 

different but equivalent versions of an instrument (Jackson, 2003; Leary, 2001; Strait et al., 

2015).  Multiple forms of CBM-M including measures of early numeracy skill, computation and 

basic math fact fluency measure, and concept/application measures, have been able to 

consistently demonstrate adequate reliability coefficients (Foegen et al., 2007; Gersten et al., 

2012).   

Validity of CBM.  Validity is an instrument’s ability to measure what it claims to or is 

intended to measure.  Predictive validity is a measure’s ability to predict a future outcome.  

Predictive validity is a type of criterion related validity, which means a measure is correlated 

with a previously established measure representative of the desired outcome.  The predictive 

validity of MBSP-C with PSSA-M is the primary focus of this study.  In other words, to what 

extent can a MBSP-C probe administered in the fall, winter, and spring of first, second, and third 

grade predict student performance on the PSSA-M administered in the spring of third grade?  If 

the relationship between the two measures is strong, then MBSP-C is likely a good instrument 

for universally screening students to identify those in need of additional math intervention.   

The predictive validity of a measure results in four possible categories upon which 

screening decisions are based: true positive, true negative, false positive, and false negative.  A 

true positive is when a student is correctly identified as being at-risk.  A true negative is when a 
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student is correctly identified as not being at-risk.  False positives, also referred to as Type I 

errors, are when students are inaccurately identified as being at-risk.  False negatives, or Type II 

errors, occur when a measure fails to identify a student as being at-risk.  False negatives are 

considered the worst possible outcome in regards to predictive validity because these students 

would benefit from additional intervention but are not identified as being at-risk.  This could 

result in missed opportunity to provide the appropriate intensity of instruction a student may 

need for positive learning outcomes (Kettler et al., 2014; VanDerHeyden, 2010).  The accuracy 

of a particular score will fit into one of these reporting categories based on screening data.  When 

the validity outcomes are analyzed as a group, the predictive validity of a measure can be further 

calculated through specificity, sensitivity, positive predictive power, and negative predictive 

power (Kettler et al., 2014).   

Specificity is the likelihood a screening measure will correctly identify a student as not 

being at-risk.  The sensitivity of an instrument is the likelihood that a screening measure will 

correctly identify a student as being at-risk.  Specificity and sensitivity address the predictive 

power of the screening instrument.  Positive predictive value and negative predictive power 

relate to the accuracy of cut-off scores used to determine whether or not a student is at-risk or the 

proportion of students screened who ultimately perform successfully or poorly on the criterion 

outcome.  Positive predictive power is the percentage of students identified as at-risk on the 

screen who later failed the criterion measure.  Negative predictive power is the percentage of 

students identified as not at-risk on the screen who successfully passed the criterion measure 

(Kettler et al., 2014; Petscher, Kim, & Foorman, 2011; VanDerHeyden, 2010).   

The specificity and sensitivity of CBM has become a focus of research as these measures 

are used more frequently to make educational decisions.  Receiver Operating Characteristics 
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(ROC) analysis is a practical option for educators to find a balance between specificity and 

sensitivity.  ROC analysis is a statistical procedure used to gauge an assessment’s capacity to 

predict an outcome or differentiate between groups.  This is done by establishing cut points to 

dichotomize a continuous scale into typical and atypical groups (Streiner & Cairney, 2007).  

ROC analysis allows for comparison between variables when their relationship is not linear.   

 The Area Under the Curve (AUC) is the primary statistic of ROC analysis.  The AUC is 

the probability a measure will predict subjects to fall within the typical or atypical group.  For 

example, when validating their brief measure of number sense (NSB) as a predictor of future 

math outcomes, Jordan et al. (2010) found an AUC of .88 in the winter of first grade.  This 

suggests if we take two random students, one struggling in math and one not, it is 88% probable 

the student with typical achievement will perform higher on the NSB measure.  An AUC 

between 0.50 and 0.70 is considered low, 0.70 and 0.90 is moderate, and over 0.90 is high.  It is 

important to note AUC is an estimate.  Therefore, a standard error should be generated.  For 

universal screening instruments, this is typically done by calculating a confidence interval.  The 

confidence interval should then be taken into account when analyzing AUC (Streiner & Cairney, 

2007).   

Diagnostic accuracy and technical adequacy address an instrument’s specificity and 

sensitivity.  Cut scores are developed, with the consideration of acceptable levels of specificity 

and sensitivity.  Universal screening instruments can afford to have higher rates of false positives 

to decrease incidences of false negatives.  This is because universal screening is meant to serve 

as a robust predictor of true positives.  False positives can be identified by taking into account 

supplemental sources of data such as parent and teacher input, additional assessment data, and 

permanent product.   
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The validity of CBM-M was reviewed in Christ et al. (2007) under the context of 

Messick’s (1995) framework which redefines validity in terms of practical application by 

combining construct validity, relevance-utility, social validity, and consequential validity.  The 

authors determined CBM-M has adequate validity to be used as a decision making tool.  

However, it is noted, no studies that directly addressed the ethical implications of CBM-M or 

consequential validity, were found.  Consequential validity deals with the potential negative 

social ramifications of an assessment or instrument.  For an assessment to demonstrate strong 

consequential validity it would not cause any atypical social consequences (Christ et al., 2008; 

Messick, 1995).  Instead, the majority of math universal screening research focuses on more 

classical notions of validity, such as predictive validity and classification agreement.  Single and 

multiple skills instruments have been shown to produce equally sound classification agreement 

in the spring and fall.  Overall the instruments were less predictive of future procedural math 

difficulties than future conceptual difficulties.  It is hypothesized that this is due to limited 

instructional focus on numerical operations and high focus on early numeracy concepts in 

kindergarten and first grade (Seethaler & Fuchs, 2010). 

Both curricular-sampling and robust indicator approaches to CBM-M have been shown to 

demonstrate high criterion-related validity (Christ et al., 2008; Fuchs et al., 2008).  In addition to 

adequate correlations with criterion measures, robust indicators and curriculum sampling CBM 

are both able to distinguish between students of varying mathematical performance and growth 

over time (Foegan et al., 2007; Fuchs et al., 2007).   

Strengths of CBM 

CBM can be used to evaluate student performance on a specific skills area (single-skill 

computation measures) or a broad range of skills (mixed-skill computation or 
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concept/application measures).  CBM assesses students on broad learning objectives as opposed 

to short-term learning objectives (Fuchs, 2004; Hintze, Christ, & Methe, 2006).  This allows 

student growth to be measured over the course of an academic year.  The expectation of growth 

over time is based on the skills students are expected to gain within that academic year.   

CBM employs standardized administration and scoring procedures.  This allows for inter-

and intra-individual comparisons.  The use of standardized measures allow data teams to make 

comparisons between students in addition to evaluating student growth (Hintze, et al., 2006; 

Shinn, 2008).  Additional factors that have contributed to CBM’s popularity include relatively 

low cost, efficiency, broad assessment of global skills as opposed to specific skills deficits, and 

access to alternative forms of the assessment (Fuchs & Fuchs, 1999).  Secondly, since CBM is 

assessing students repeatedly on the same set of skills, comparisons can be made regarding 

retention and generalization of learning (Hintze et al., 2006).   

These factors have led to CBM’s identification as a more appropriate screening and 

progress monitoring tool than commercial standardized achievement tests.  For example, fact 

retrieval (Geary & Hoard, 2001) and number sense (Jordan et al., 2009) have been shown to be 

more relevant for early identification of math deficits than standardized norm-referenced 

academic achievement tests (Martin et al., 2012). 

There are strengths and weaknesses to both curriculum sampling and robust indictor 

CBMs, and educational systems need to be aware of these when choosing an instrument that best 

meets their universal screening needs.  Benefits of a curriculum sampling approach include a 

direct association to instruction children receive in the classroom.  Instruments developed with a 

curriculum sampling approach are directly linked to the curriculum students receive.  Therefore, 

teachers are able to relate CBM performance back to specific skills represented in the curriculum 
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to address deficits and aid in instructional planning (Fuchs et al., 2008; VanDerHeyden & Burns, 

2005).  Benefits of robust indicator CBMs include allowing for comparisons across years and a 

focus on core skills as opposed to a particular curriculum.  Robust indicators can be used for 

multiple years, which saves both time and money.  Data generated from robust indicator 

measures aid in program evaluation because data can be compared over multiple cohorts of 

students.   

Whether curriculum-sampling or robust indicator CBM are used, the skills assessed are 

reflective of student learning objectives.  This results in the appropriate use of CBM as both a 

universal screener and as a progress monitoring tool.  CBMs are frequently used to identify 

students who may be in need of additional intervention and monitor the effectiveness of 

intervention through progress monitoring (Fuchs et al., 2005).  According to best practices, the 

universal screening instrument and progress monitoring instrument should be aligned.  When the 

two instruments are aligned they measure the same constructs and function off of the same scale.  

This allows for data analysis teams to make more comprehensive conclusions and comparisons 

regarding growth over time which translates into better coordination of services and fluidity 

between tiers (Clarke et al., 2014).  

Potential Weaknesses of CBM   

While recent research is promising, weaknesses of CBM as universal screening 

instruments include limited research regarding their technical adequacy for educational decision-

making (Christ, Johnson-Gros, & Hintze, 2005).  Another potential weakness of CBM as 

universal screening instruments and an area which requires more research is whether or not they 

are appropriate for diverse populations.  School systems serve increasingly diverse populations 

in terms of race, linguistics, and culture.  School systems need to be aware of the concept of 
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universal design when choosing an instrument and more importantly, interpreting universal 

screening data (Albers & Kettler, 2014).  For example, school systems should consider if a 

universal screening tool is appropriate to use with English language learners, those who are 

frequently truant, have a fine motor deficit, or speech and language deficits.     

Both the curriculum-sampling and robust indictor approach to CBM have their unique 

differences which school systems need to be cognizant of when considering what universal 

screening instruments best meet their needs.  Curriculum-sampling measure’s direct reflection of 

a curriculum can be viewed as a strength regarding validity but a weakness in terms of practical 

application.  A new measure needs to be generated anytime the curriculum is modified to 

continue to be reflective of the mathematics curriculum.  This process can be time consuming 

and also requires new local normative data to be generated.  Secondly, comparisons of student 

growth cannot be made from year to year because of the dynamic nature of curriculum sampling 

CBMs (Foegen et al., 2007).   

The development of robust indicator measures can be difficult due to the dearth of 

general outcome measures in mathematics, especially after the development of early numeracy 

skills and mastery of basic computation (Kelley, 2008; Mazzocco, 2003).  Because robust 

indicator CBMs are not directly tied to the curriculum, it is more difficult for teachers to use data 

for instructional decision making (Foegen et al., 2007).  

Types of CBM-Math 

Gersten et al. (2012) conducted a literature review of universal screening of mathematics.  

The researchers included articles from 1996 to 2011 on ERIC and PsychINFO electronic 

databases in addition to a manual review of the Journal of Special Education Exceptional 

Children, the Journal of Educational Psychology, and the Journal of Learning Disability.  
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Research included in the review focused on children ages birth to 12 years.  The authors 

identified 48 total studies; 21 were selected for further review.  Sixteen of the studies met 

inclusion criteria.  Eleven of the 16 selected focused on single proficiency measures.  Four 

studies included the use of multiple proficiency measures.  Of the 16 studies selected, five 

predicted MLD or low achievement with diagnostic utility statistics.  Three of the studies used a 

combination of single skills, multiple skill measures, and diagnostic utility statistics to predict 

mathematical deficits.  All of the studies focused on one or more of the four skills that compose 

number sense/number competence: magnitude comparison (Booth & Siegler, 2006), strategic 

counting (Geary, 2004), ability to solve simple word problems (Jordan et al, 2009), and 

automaticity of basic math facts (Jordan, Hanich, & Kaplin, 2003).  The majority of universal 

screening measures being used in educational systems reflect one of more of the mathematical 

components reviewed in this 2012 literature review. 

Measures of Early Numeracy  

Measures of early numeracy skills have a rapidly growing body of research with 

promising technical adequacy.  Given the primary function of universal screening is for early 

identification of students in need of additional intervention, early numeracy skills, also referred 

to as early mathematical competencies, is of high importance (Methe, Begeny, & Leary, 2011).  

Early intervention of math deficits coupled with progress monitoring with formative assessment 

have been identified as critical factors for improving learning outcomes (Clarke & Shinn, 2004).   

Cognitive psychologists have identified four early numeracy skills as being significant in 

future math outcomes: (a) magnitude comparison, (b) strategic counting, (c) the ability to solve 

simple word problems, and (d) an understanding of basic math facts (Dehaene et al., 2004; 

Geary, 2004; Gersten et al., 2012; Geary, 2004).  Failure to grasp basic mathematical concepts 
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such as understanding the meaning of numbers, counting, and magnitude discrimination can have 

serious implications on learning outcomes (Gómez-Velázquez, Berumen, & González-Garrido, 

2015).  The majority of early numeracy research focuses on some variation of these skills.  

 Reliability and validity.  Curriculum based measures of early math skills (CBM-EM) 

instruments administered with pre-kindergarten and kindergarten students have demonstrated 

strong reliability coefficients.  Validity coefficients fall within the low to moderate range (.40 to 

.60) with this very young population but improve significantly, to .70 and higher, when CBM-

EM are administered to students in first grade (Foegen et al., 2007; Gersten et al., 2012).   

All four skills of CBM-EM have demonstrated moderate to high predictive validity.  

Magnitude comparison measures have demonstrated validity coefficients ranging from .50 to.79, 

which are considered appropriate for the purpose of universal screening.  Strategic counting 

measures have also demonstrated adequate validity for first grade students (.68), but relatively 

weak validity in kindergarten (.37).  A measure composed of simple word problems administered 

in the fall of kindergarten demonstrated moderate validity with a computation measure given at 

the end of second grade (.51).  Measures of basic fact retrieval have yielded concurrent and 

predictive validity coefficients ranging from .50 to .59 (Gersten et al., 2012).   

Predictive adequacy. Recent research indicates tests of early numeracy skills 

administered in kindergarten and first grade have a strong relationship with math achievement in 

third grade (Jordan, Kaplan, Ramineni, & Locuniak, 2009; Geary, Bailey, & Hoard, 2009; 

Jordan, Glutting, Ramineni, & Watkins, 2010).  Clarke and Shinn (2004) investigated four 

potential measures of CBM-EM, an oral counting measure, a number identification measure, a 

quantity discrimination measure, and a missing number measure.  Two standardized, nationally- 

normed tests of academic achievement (Woodcock-Johnson Applied Problems subtest and the 
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Number Knowledge Test) and a first grade computation probe were used as criterion measures.  

All four CBM-EM demonstrated strong inter-scorer, alternate form, and test-retest reliability, 

ranging from .76 to .99.  Number identification, quantity discrimination, and missing number 

demonstrated moderate to strong concurrent validity with criterion measures in the fall, winter, 

and spring, ranging from .74 to .79.  Oral counting consistently demonstrated the relatively 

weakest concurrent validity with the other experimental measures, ranging from .55 to .79.  Oral 

counting yielded the weakest correlation with criterion measures, ranging from .49 to .70.  

Quantity discrimination was found to be the best predictor of early mathematical skills, both in 

terms of concurrent validity and predictive validity, ranging from .68 to .93 (Clarke & Shinn, 

2004).  Clarke et al. (2008) expanded on this research by investigating the predictive power and 

growth over time of a CBM-EM previously found to be reliable and valid (Clarke & Shinn, 

2004).   

Clarke et al. (2008) made an argument that rate of growth should play a significant role 

as a feature of student learning when evaluating the effectiveness of an intervention or 

instructional program, especially since this information is used for instructional decision making 

in MTSS/RTI systems.  Of the four measures studied, oral counting, missing number, number 

identification, and quantity discrimination, the rate of improvement, or slope, of the quantity 

discrimination measure was the only one to account for additional variance, outside of the 

variance as a screening measure, with a criterion measure (Clarke et al., 2008).   This suggests 

quantity discrimination is a stronger progress monitoring and universal screening tool for young 

students in need of or receiving math intervention than measures of oral counting, number 

identification, and missing number.  The authors note concerns with the relatively small sample 
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size of their study (n = 111) and suggest the need for replication of this study with a larger 

sample size.   

Missall, Mercer, Martinez, and Casebeer (2012) studied the same early numeracy skills 

with a significantly larger sample size (N = 535) with similar results.  The authors evaluated the 

predictive validity of the Tests of Early Numeracy Curriculum-Based Measurement (TEN-CBM) 

with the Indiana Statewide Testing for Educational Progress-Plus (ISTEP+).  TEN-CBM is a 

paper and pencil, two-minute mixed computation probe.  The TEN-CBM assess four areas of 

number sense, oral counting, missing number, quantity discrimination, and number 

identification.  The results indicated several significant findings.  The results indicted a decrease 

in scores from spring of kindergarten to fall of first grade, which suggested loss of skill over the 

summer.  Oral counting and number identification screens did independently predict future math 

outcomes.  Quantity discrimination and missing number were the strongest predictors of 

performance on the state exam ISTEP+.  The authors’ findings support previous research on 

screening for early numeracy skills.  Students who did not demonstrate proficiency on quantity 

discrimination and missing number screens in kindergarten continued to demonstrate poor math 

achievement in third grade (Jordan et al., 2010; Missall et al., 2012).  They suggested 

implementing a quantity discrimination and missing number screening in kindergarten to identify 

students who need additional intervention (Missall et al., 2012).  

The Number Sets Test (Geary, Bailey, & Hoard, 2009) is a group-administered paper and 

pencil assessment taking less than 10 minutes to complete.  During administration, students are 

given a sheet with a combination of number sets composed of shapes such as diamonds, 

triangles, squares, and Arabic numerals.  They are instructed to circle all of the sets that add up 

to either 5 or 9 depending on which form of the test they are given.  Students with the sums to 5 
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version have one minute per page.  Students with the sums to 9 form are given 90 seconds.  The 

predictive power of the Number Sets Test was demonstrated to be strong.  When administered in 

first grade, the Number Sets Test was able to correctly identify 67% of students identified with a 

MLD in mathematics by third grade.  This was one of the few math CBM studies which also 

explored a measure’s ability to correctly identify students who were not in need of additional 

math intervention.  When administered in first grade, data from the Number Sets Test were able 

to correctly identify 90% of students who were not at-risk of a MLD (Geary et al., 2009).   

The CBM-EM research was expanded on by the validation of a brief number sense 

screener (NSB) in a longitudinal study (Jordan et al., 2010).  The NSB is an untimed, 33-item 

screener composed of items to assess counting knowledge and principles, number knowledge, 

number recognition, nonverbal addition and subtraction, addition and subtraction story problems, 

and addition/subtraction number combinations (Jordan et al., 2008).  NSB has previously been 

established as having a unique and significant contribution to the variance on the Woodcock-

Johnson, Third Edition (WJ-III; McGrew et al., 2007) math achievement subtests administered in 

first grade.  The NSB was administered to kindergarten and first grade students (N = 204) on six 

occasions throughout the beginning of kindergarten to the middle of first grade.  Results of the 

NSB were then used to predict performance on a high-stakes assessment given 3-4 years later 

while in third grade.  Repeated measures and ROC analysis indicated that the skills measured in 

the NSB while students are in kindergarten and first grade is predictive of math achievement in 

third grade with the AUC ranging from .78 to .88 (Jordan et al., 2010).   

Despite these encouraging findings regarding CBM-EM, Methe, Begeny, and Leary 

(2011) identified weaknesses with these measures.  The authors noted the presence of few CBM-

EM focused on practical application skills.  The authors explored the technical adequacy and 
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diagnostic accuracy of CBM-EMs intended to measure informal and conceptual knowledge in an 

attempt to provide more information regarding the practical application of CBM-EM.  It is 

important to note, the measure in this study was also developed by the authors.  The two 

kindergarten measures, equal partitioning and ordinal positioning, demonstrated strong 

reliability, validity, sensitivity to growth, and diagnostic accuracy.  During the equal partitioning 

measure, students were shown two characters with small dots arranged under them or a series of 

dots between them.  The students were then asked one of two questions.  For an array item they 

would be asked: “How many cookies would they each get if they shared the cookies?”  For a 

shared item students would be asked, “Does it look like they each have an equal share of cookies 

between them?”  Students were asked to point or tell the examiner what place an object was in 

along a horizontal line on ordinal positioning measures.  In terms of measuring student growth, 

equal partitioning and ordinal partitioning, student performance changed significantly over time 

and accounted for 40% of the variance in criterion measures when administered in isolation.  The 

combined variance of these two measures accounted for over half of the variance on criterion 

measures.  Two first grade measures, grouping by 5 and verbal facts, demonstrated promising 

technical and diagnostic accuracy, but more research is needed.   The researchers suspect 

practical application measures may be less reflective in first grade because many first grade 

curriculums focus on mastery of basic computation skills (Methe et al., 2011).   

Assessment tools with an emphasis on conceptual understanding of early numeracy were 

investigated by VanDerHeyden et al. (2011) with less positive outcomes.  The researchers 

developed six new measures of math assessment to expand on previously established 

assessments of early numeracy skills.  The newly developed measures assessed number sense 

(ordinality, subitivity, and cardinality), shape recognition, and patterning.  Previously-established 
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measures included in the study were Missing Number (Clarke & Shinn, 2004) and Choose 

Number, Draw Circles, Write Number measures (VanDerHeyden, 2008).  The previously-

established measures demonstrated stronger reliability and validity than the newly-developed 

measures (VanDerHeyden et al., 2011).   

 Locuniak and Jordan (2008) investigated the relationship between number sense in 

kindergarten and calculation fluency in second grade, which has substantial implications for 

universal screening in mathematics.  The researchers used block entry regression to examine the 

relationship between number sense and calculation fluency.  In the first block, they accounted for 

age, reading, memory, and verbal and spatial recognition.  The second block was comprised of 

number sense measures including counting, number knowledge, nonverbal calculation, story 

problems, and number combinations.  Results indicated that, while all the measures correlated 

positively with each other, number sense measures were able to predict calculation fluency 

uniquely outside of the measures controlled for in block 1.  Number combinations accounted for 

the most unique variance, indicating children who understand concepts of basic addition and 

subtraction in kindergarten are less likely to demonstrate math deficits in second grade 

(Locuniak & Jordan, 2008).  These results support the earlier findings of Mazzocco and 

Thompson (2005).  In their 2005 study, the authors found that mental math of basic addition and 

subtraction facts in kindergarten were predictive of math achievement and the presence of a 

specific learning disability in second and third grade.  The longitudinal study included 209 

students (103 males and 106 females) from one of seven elementary schools in a suburban 

school district.  Participants were administered an individual tests of basic math, visual-spatial 

skills, and reading-related skills, two to three times per year in kindergarten through third grade.  

The authors found strong ROC values when using the composite score of all given measures 
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(.90).  The four core subtests of the Test of Early Math Ability, Second Edition, yielded a 

similarly strong ROC value of .88.  These findings support early deficits in numeric processing 

as being highly predictive of MLD and/or low math achievement in second and third grade.  

 There is some debate in the field whether automaticity of basic math facts should be 

included as a component of number sense.  However, it is well established that poorly developed 

early numeracy skills impact learning and understanding of arithmetic (Geary, 2004; Mazzocco 

& Thompson, 2005). 

Computation and Fluency   

 The need for ongoing research to identify general outcome measures in mathematics has 

been clearly acknowledged.  Specific to mathematics, it is recognized there are not clearly 

defined general outcome measures (Mazzocco, 2003).  However, computation skills, including 

basic math fact fluency, have a growing body of research to support their use as a general 

outcome measure.   

Basic fact fluency has been a moderate indicator of future math outcomes (Geary et al., 

2012; Keller-Margulis et al., 2008; Shapiro et al., 2006) and correlates with performance on 

higher level mathematics procedures (Price, Mazzocco, & Ansari, 2013).  Therefore, it is 

applicable to a large range of ages and grades.  The complexity of the arithmetic problems 

represented on computation CBM varies significantly based on the grade or instructional level 

being assessed.  Computation fluency can be assessed with single or multiple skill probes or 

cloze procedures.  The predictive validity of fluency based computation CBM is the primary 

focus of this study.    

Cloze procedures. Cloze procedures in math were initially explored by Jiban and Deno 

(2007).  The authors studied the predictive validity of high stakes testing in relation to other 
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commonly-used CBM measures, a 1-minute computation probe, and a 1-minute reading maze 

measure.  Cloze math CBM require students to identify a missing portion of a number sentence 

(i.e., 2 + __ = 4; __ - 3 = 2).  The authors’ hypothesized cloze math CBM would have the 

desirable characteristics of previously established math CBM, but be a better measure of 

conceptual understanding and application than traditional computation focused probes.   

Basic computation fluency. Automaticity of basic math facts is considered a bottleneck 

skill in mathematics, meaning deficits with fact retrieval can affect many other components of 

mathematical learning and achievement (Geary, 2004; Geary et al., 2012).  Difficulty with 

automaticity of basic addition and subtraction facts is an early indicator of math learning 

problems.  Retrieval of math facts remained a deficit for students identified as having a specific 

learning disability in math even when significant progress was made working with algorithms, 

procedures, and simple word problems (Gary, 2004; Geary et al., 2012; Jordan et al., 2003).   

Fluency with computational tasks indicates mastery and allows for application of these skills to 

higher level problem solving (Geary, 2004; Johnson & Layng, 1992; VanDerHeyden & Burns, 

2009).  Therefore, an argument can be made to support early screening for fact retrieval skills. 

 Computation measures are composed of basic arithmetic facts.  Measures can be single- 

or multiple-skill measures and the complexity of arithmetic problems vary based on the grade-

level.  Typically, computation measures are timed to assess the rate and accuracy of 

performance.  These instruments are scored as digits correct per minute or digits correct per the 

length of the probe when wishing to increase sensitivity (Stevens-Olinger, 2014).   

Reliability and validity.  Reliability coefficients of .70 or higher are generally thought to 

be acceptable for universal screening purposes (Burns et al., 2014; Christ & Nelson, 2014).  
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Foegen et al. (2007) found CBM-M computation to consistently demonstrate adequate internal 

consistency, test-retest reliability, and alternate form reliability, ranging from .73 to .98.   

Christ et al. (2008) examined the reliability of CBM-M Basic Computation Fluency 

probes within the context of a literature review.  Of the eight studies that met inclusionary 

criteria at the time, CBM-M demonstrated internal consistency coefficients of .80 or higher.  The 

authors noted a significant amount of variation in interrater reliability, ranging from .60 to 1.00.  

At the time, no studies adequately examined the test-retest reliability of CBM-M.   

Cloze CBM accounted for more variance than traditional math computation probes when 

predicting performance on the state academic assessment, Minnesota Comprehensive 

Assessment in Mathematics (Jiban & Deno, 2007).  However, due to low reliability of cloze 

CBM, the results of this study should be interpreted with caution.  When the authors combined 

the variance on the math cloze CBM and reading maze, it accounted for 52% of the variance on 

state academic assessments.   

Stevens-Olinger (2014) expanded on the Jiban and Deno (2007) study with further 

examination of the technical adequacy, instructional effectiveness, and logistical application of 

cloze math CBM.  Computation and cloze math CBMs were administered to 215 third grade 

students from 12 elementary schools, with varied administration times (1-, 2-, or 3-minutes).  All 

combinations of the CBMs were administered to all students over the course of two days 

approximately three weeks before the state administered academic achievement test.  In contrast 

to previous findings (i.e., Hintze, Christ, & Keller, 2002; Jiban & Deno, 2007), none of the 1-

minute measures were found to be technically adequate.  The reliability increased with 

administration time, with the 3-minute basic computation probe demonstrating the highest 

reliability (.78 for 1-minute, .81 for 2-minute, and .89 for 3-minute).   
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In terms of predictability with the state administered academic achievement test, cloze 

CBM demonstrated higher correlation coefficients than basic computation probes (.53 to .60).  

However, correlation coefficients with the state assessment were moderate at best for all 

measures (.43 to .60).  Basic computation and cloze procedure accounted for a similar amount of 

variance on the state assessments but a weak to moderate amount on the computation probe 

(18.8% to 32.7%) and for the cloze CBM (27.9% to 36.4%).    

These results indicate that cloze procedure CBMs are better predictors of future math 

outcomes.  Stevens-Olinger had similar findings when comparing the predictive validity of basic 

math fact probes, including both one- and three-minute cloze procedure probes.  The cloze 

procedure CBM were a stronger predictor of student performance on the state assessment.  It is 

noted that three minute CBMs scored as digits correct had the highest reliability.   

Strait et al. (2015) recognized that CBM are generally thought to be reliable tools for 

universal screening and progress monitoring students but drew attention to a lack of research 

examining test-retest and alternate form reliability of CBM math measures.  The researchers 

examined the test-retest and alternate form reliability of the math CBM generated through 

interventioncentral.com.  This information was sought out to determine if the free probes 

generated on interventioncentral.com have adequate reliability to be used as a progress 

monitoring tool for math computation intervention.  The 283 participating sixth grade students 

were administered four alternative forms of the generated multiple skill probes, two times each 

over the course of the fall semester.  Probes were completed every two weeks.  Test-retest 

reliability, calculated with Pearson’s correlation, ranged from .49 to .75 for fluency scores and 

.61 to .75 for accuracy scores.  Alternate-form reliability, also calculated with Pearson’s 

correlation, ranged from .41 to .81 for fluency scores and .47 to .78 for accuracy scores.  A 
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multilevel linear model was used to calculate test-retest reliability to determine the stability of 

individual’s scores in the context of each individual math class.  Level 1 was set as Time 1 or 2 

of probe administration, Level 2 as the individual random effect, and the classroom as the Level 

3 random effect.  Test-retest intra-class correlations (ICC) ranged from .49 to .73 for fluency 

scoring and .59 to .74 for accuracy scoring.  The alternate forms reliability was generated using 

the same Level random effects as test-retest reliability.  Separate alternative wave reliability was 

calculated for the first and second waves of probe administrations.  The first wave ICC estimates 

for fluency scores were .58 and .57 for accuracy.  The ICC estimate for the second series of 

probe administrations was .73 for fluency scores and .71 for accuracy scores.  These results 

indicate moderate test-retest and alternate form reliability, which is acceptable for screening and 

progress monitoring purposes.  The authors found when two or three measures were aggregated, 

test-retest and alternate form reliability increased above .80 for both fluency and accuracy scores.  

The findings of this study indicate the reliability of the fluency and accuracy measure 

administered improved greatly when two or three scores were analyzed as opposed to one score, 

suggesting the need to administer multiple probes to each student to increase reliability.   

MBSP-C has demonstrated particularly strong reliability estimates.  MBSP-C has been 

shown to demonstrate internal consistency ranging from .94 in third grade to .98 in second grade 

(Fuchs et al., 1994; Fuchs, Hamlett & Fuchs, 1999).  There are 30 alternate forms of the MBSP-

C probe.  Alternate form reliability ranged from .73 to .93, with the majority of reliability 

coefficients falling above .80.  The sample size of these studies were relatively small, ranging 

from 7 to 28 students at each grade level (Fuchs, Hamlett & Fuchs, 1998).   

Jiban and Deno (2007) investigated the predictive validity of two brief one-minute math 

CBMs, one a traditional fact fluency probe and one cloze procedure, in third and fifth graders.  It 
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is important to note that this study consisted of a relatively small sample size (third grade N = 35; 

fifth grade N = 49), therefore the results should be interpreted with caution.  The third grade one-

minute math fact fluency probe did not correlate with performance on the state math assessment 

and yielded a moderate correlation in fifth grade.  The alternate form reliability of both one-

minute math probes was moderate to moderately strong but did not meet the .80 reliability that is 

considered ideal.  Similar to the findings of Strait et al. (2015), when the researchers aggregated 

two scores, the reliability of the obtained data improved to an acceptable level.  However, this 

substantially increases the amount of instructional time used and progress monitoring data used 

to make instructional decisions.  It is important to note previous research contrasts these findings.  

For example, Hintze et al. (2002) found one brief probe demonstrated adequate technical 

adequacy for the purpose of universal screening.  

Predictive adequacy. Christ, Scullin, Tolbize, and Jiban (2008) determined that CBM in 

math computation was an appropriate universal screening measure.  However, the authors 

recommended the need for more research regarding the validity of CBM computation and 

technical adequacy.  A 2007 study found computation and concept/application measures are 

predictive of future math outcomes.  Computation measures were found to demonstrate technical 

adequacy for progress monitoring and universal screening (Fuchs et al., 2007).  One-minute 

CBM-M computation probes have demonstrated adequate technical adequacy for the purpose of 

universal screening when scored as digits correct (Christ, Johnson-Gros, & Hintz, 2005; Hintze 

et al., 2002).  Longer administration times (12-13 minutes) were required to support high-stakes 

decision making (Christ et al., 2005). 

Codding et al. (2015) examine the relationship between CBM and performance on state 

assessments administered in seventh grade.  The researchers made the argument that although 
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CBM appear to have weak face-validity at the late elementary/secondary level, students still need 

to have mastered basic skills to access more complicated content knowledge (Codding et al., 

2015; Daly et al., 2007).  A four-minute, mixed-computation math probe CBM-M was group-

administered to 249 seventh graders in the fall, winter, and spring.  Data analysis included a 

multiple indicator parallel process latent growth model to evaluate growth trends.  Findings 

indicated that the achievement gap between high and low achieving students widened as the 

school year progressed.  When growth models were examined over the course of years, the 

achievement gap lessened in reading, but remained present in mathematics.  CBM data were then 

correlated with performance on a state administered achievement test.  The results reflect 

previous literature; CBM-M had a moderate correlation (.26 to .35) with math achievement on 

the end of the year state assessment.  Spring CBM data correlated more strongly with 

performance on the state assessment than fall and winter data (Codding et al. 2015).   

Early identification of mathematical deficits with measures of computation fluency were 

explored by Purpura, Reid, Eiland, and Baroody (2015).  The researchers drew from previous 

research supporting the use of fluency-based screening tools to develop a brief measure of 

discrete skills for pre-school students.  Discrete skill measures are generally fluency-based and 

designed to assess specific mathematical skills.  These measures were previously shown to 

demonstrate good predictive validity and sensitivity to change over time (VanDerHeyden, 

Broussard, & Cooley, 2006).  The researchers identified two potential concerns or limitations 

when discrete mathematical measures were used to determine future academic risk.  Fluency-

based mathematical measures correlate highly with non-math related measures such as reading 

fluency and school readiness measures.  This suggests fluency-based measures are assessing 

non-mathematical constructs in addition to math skills.  The second limitation identified by 
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Purpura et al. is the relatively small number of skills assessed on discrete measures.  This is 

problematic given the absence of consistently agreed upon general outcome measures in 

mathematics.  The findings of this study support the use of a brief measure of mathematical skills 

followed by a more in-depth broad measure and progress monitoring.   

The use of a 5-minute computation probe as a universal screener for math disabilities was 

examined by Fuchs et al. (2005).  The researchers sought to gather more information regarding 

the prevention, identification, and cognitive determinants of mathematical skills deficits and 

learning disabilities.  Based on CBM data and teacher referral, 319 of the 667 first grade 

participants were identified as being at-risk for learning problems.  The researchers provided 

high quality math intervention to further differentiate between student groups.  Based on week 4 

CBM data, the lowest 21% of students (n = 139) were assigned to one of two groups, control 

group or tutoring condition group.  Students assigned to the tutoring group received 48 tutoring 

sessions with either a 1:2 or 1:3 teacher: student ratio.  Math fact fluency CBM data generated 

unrealistically high prevalence rates of math disabilities, 9.40% of the general population for 

computation CBM and 6.38% for addition fact fluency.  The high prevalence rates generated by 

the computation and addition fluency probe indicate a high rate of false positives.  As previously 

noted, poor classification accuracy can have a significant impact on the utility of a universal 

screening measure.  Measures with poor technical adequacy and classification accuracy can drain 

school fiscal and personnel resources (Clarke et al., 2014; VanDerHeyden, 2013).   

Shapiro et al. (2006) explored the correlation between universal screening tools in 

reading and math with a state or standardized academic achievement test.  The study took place 

in two different schools.  Data were originally collected to develop local normative data.  MBSP-

C was only used at District 1.  District 2 used a self-developed mixed computation math probe.  
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Math CBM data from the fall were correlated with a standardized academic achievement test in 

the spring of the same academic year.  The researchers collected universal screening data for first 

through fifth grade.  No statistical analysis were performed to determine correlations with first 

grade data and performance on the state assessment.  Second and fourth grade math screening 

data were correlated with Stanford Achievement Test scores.  Third and fifth grade screening 

data were correlated with the Pennsylvania System of School Assessment (PSSA).  There are no 

reported correlation data for District 1’s MBSP-C in second and first grade.  Results indicated 

moderate correlations between MBSP-C data and PSSA performance in the winter and spring, 

ranging from .50 to .53.  Fall data were the least predictive (.07 to .41).  Winter data were the 

most predictive of PSSA performance in the spring.  It is important to note students with an IEP 

for anything other than Speech/Language support or Gifted education were excluded from the 

study sample.   

Keller-Margulis et al. (2008) sought to gain more information about the relationship 

between math computation screening tools and the PSSA administered one and two years later.  

They also evaluated growth rates and classification accuracy between math screening data and 

PSSA.  The researchers used an archived data set originally collected during the 2002-2003 

academic year to develop local normative data.  Students with an IEP for anything other than 

Gifted Education or Speech/Language Support were excluded from the sample.  This could be a 

potential weakness when determining the utility of a measure for identifying students in need of 

additional intervention.  Excluding a portion of the general population a universal screener is 

meant to identify from the sample population will significantly impact analysis of predictive 

validity, technical adequacy, and diagnostic adequacy.   
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Results indicated a moderate correlation between MBSP-C in first grade (.50 to .59).  The 

correlation between fall first grade MBSP-C data and PSSA was weak (.27) and PSSA 

administered in the spring of third grade.  Second grade MBSP-C had a moderate correlation 

with PSSA administered in the spring of third grade (.52 to .60) but a significantly weaker 

correlation with PSSA administered in fourth grade (.14 to .58).  Third grade MBSP-C data had a 

moderate correlation with the PSSA administered in the spring of the same year (.40 to .49).  The 

correlation between concept/application probes and PSSA followed a similar pattern.  The 

authors concluded that their results support the use of CBM as a universal screening tool for 

early identification of students in need of additional intervention (Keller-Margulis et al., 2008).   

There are several factors which could have impacted the outcomes of the Keller-

Margulis, et al. (2008) study.  First, math curriculums have changed rather significantly since the 

data collection period of the Keller-Margulis et al. (2008) study with the adoption of a common 

core reflecting the NCTM focal points which acknowledge the importance of both automaticity 

and application of math skills.  Data were collected during the 2002-2003 school year.  Second, 

the data represented in the study were collected initially for the purpose of developing local 

normative data and students with IEPs were excluded, with the exception of Gifted and 

Speech/Language IEPs.  Therefore, the sample is not representative of most school populations 

which in turn, decreases the relevance of the findings.  Classification accuracy was further 

explored by Clarke et al. (2011) using a significantly smaller but more diverse population. 

 Clarke et al. (2011) examined the classification accuracy of easyCBM first grade 

mathematics screening measures.  The first grade easyCBM measures are based on NCTM focal 

point standards and consist of three subsections: Number and Operations and Algebra, Number 

and Operations, and Geometry.  The probes were administered to 145 first grade students from 
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four different schools in the fall, winter, and spring.  Although the sample size of this study is 

relatively small, it is important to note participating students were recruited from a much larger 

nationally representative sample of schools who participated in a commonly-used data 

warehousing system.  

The TerraNova 3 was administered in the spring of first grade and served as the criterion 

measure.  The TerraNova 3 is nationally-normed standardized achievement test aligned with 

state standards, NAEP’s framework, and the NCTM’s focal standards.  EasyCBM demonstrated 

strong reliability, .78 in the fall, .85 in the winter, and .87 for spring administrations of the 

assessment.  Based on correlation with the TerraNova 3, easyCBM first grade math probes 

demonstrated adequate concurrent and predictive validity, ranging from .58 in the fall to .72 in 

the spring.  Results of the ROC analysis indicated good levels of specificity and sensitivity at the 

25th and 40th percentile (Methe et al., 2015).  It is important to note the researchers found 

stronger positive predictive power when they used a higher cut-score than those published by 

easyCBM.  The published cut-off scores generated a significant number of false positives.  These 

findings highlight the need for local normative data and ROC analysis.   Correlation with a 

previously established measure of mathematical achievement, in addition to sound technical 

adequacy, indicate easyCBM first grade probes are an appropriate screening tool when 

identifying students who are at-risk for math deficits.                                           

Another study investigated the technical adequacy of easyCBM with older students. 

Anderson, Lai, Alonzo, and Tindal (2011) explored the utility of the fifth grade easyCBM math 

probes as both a universal screening measure and progress monitoring tool for students who were 

persistently low-performing.  Students who were persistently low-performing are defined as 

those identifying as having a learning disability not classified as “severe” and those achieving 
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well below grade-level.  The researchers administered the probes to students from two mid-sized 

school districts in the Pacific Northwest.  The sample size ranged from 2,085 to 2,099 for each 

test item.  The data were analyzed using a one-parameter Rasch model and graphed by 

percentage of students who responded correctly to evaluate how the item functioned for different 

student groups.  Items ranged in difficulty from -2.56 to 2.58, with 24 items having a difficulty 

rating below zero and 24 above zero.  This indicated an even sampling of questions students are 

likely to answer correctly and more difficult questions.  This even sampling of questions is an 

ideal test composition.  The difficulty level of the items were evenly distributed across the 

NCTM focal points, which indicates strong internal consistency.  The researchers concluded the 

easyCBM probes show promise as a screening and progress monitoring tool but caution these 

results are based on how the items functioned at one point in time.  They recommended further 

longitudinal research to determine how the items function in relation to student growth over time 

(Anderson et al., 2011). 

While current research supports the use of CBM-M as universal screening instruments, 

Methe, Briesch, and Hulac (2015) question the technical properties of CBM-M for decision 

making purposes.  The authors argue the majority of the research validating CBM-M is 

correlational in nature and more information is needed regarding the technical properties of 

CBM-M instruments.  The authors recommend the technical adequacy of all commercially 

available CBM-M be reviewed to ensure classification accuracy.  The authors developed math 

probes with more consistent item content than a commercially available CBM-M and found it to 

have more stability and better classification accuracy (Methe et al., 2015).  Educators and 

researchers should be willing to revisit previously established measures and practices to 

minimize classification errors.   
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Initial research supports the use of computation fluency as a universal screening measure.  

However, the current research base is preliminary in nature.  Further research is needed 

regarding the technical adequacy of computation measures for the purpose of universal screening 

and educational decision-making.  This study aims to further investigate the predictive validity of 

MBSP-C when administered in the fall, winter, and spring of first, second, and third grade with 

the math portion of the state academic achievement test administered in the spring of third grade.  

If MBSP-C demonstrates a strong predictive relationship with the state assessment, further 

examination is warranted to determine sensitivity, specificity, positive predictive power, and 

negative predictive power.   

Concepts and Applications   

Concept and application CBM focus on a student’s ability to use early numeracy skills 

and/or computation skills to problem solve.  The skills assessed on concept and application CBM 

can vary significantly based on sources of development (robust indicator or curriculum 

sampling) and grade level.  Concept and application probes generally encompass one or more of 

the following skills: counting, number concepts, names of numbers, reading charts and graphs, 

geometry, measurement, money, fractions, and word problems.   

Reliability and validity.  Concept and application measures demonstrate strong 

reliability, ranging from .81 to .98.  Word problem solving measures demonstrate slightly lower 

reliability coefficients but still acceptable in the moderate range, varying from .60 to .83 (Foegen 

et al., 2007).  Concept and application CBM demonstrate strong criterion validity when 

correlated with state assessments and nationally-normed standardized tests of academic 

achievement (Foegen et al., 2007; Jitendra, Dupuis, & Zaslofsky, 2014; Keller-Margulis et al., 

2008; Shapiro et al., 2006).   
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Amselmo (2014) investigated the concurrent and criterion validity of the AIMSweb math 

concept and application probes (M-CAP) with the state required, North Carolina End-of-Grade 

Mathematics test for students in seventh grade.  Results of this study indicate student 

performance on the M-CAP administered in seventh grade has a strong correlation with the state 

mathematics assessment administered at the end of seventh grade (r = .65).  The criterion 

validity of the M-CAP (r = .66) indicate AIMSweb math concept and application probes are 

predictive of student performance on the End-of-Grade mathematics test.  AIMSweb math 

concept and application probes demonstrated a much higher concurrent and criterion validity for 

secondary students than the AIMSweb computation probe, which accounted for 4.3% and 4.5%, 

respectively, of the variance on the North Carolina End-of-Grade Mathematics test.   

Predictive adequacy. There is a growing body of evidence to suggest word problems 

account for unique variance on criterion measures, especially when differentiating between 

subtypes of math deficits.  Shin and Bryant (2015) identified a significant difference between 

students with a math learning disability (MLD) and those with MLD and reading learning 

disability (RLD).  Students with MLD only consistently outperformed students who had both 

mathematical and reading deficits on word problems.  Although students with MLD scored 

higher on the word problem measure, there were minimal differences between the two student 

groups when performance on the mathematical operations test were compared.   

There is evidence to support the use of word problem CBM to identify students at-risk of 

mathematical deficits.  Word problem CBMs were found to have a unique variance, separate 

from math calculation and reading skills when predicting performance on the California 

Standardized and Reporting test (STAR; Sisco-Taylor et al., 2015).  Results of a forced 

hierarchal regression indicated that two separate calculation measures accounted for 39% of the 
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variance.  Word problem CBM accounted for 8% of the variance in student performance on a 

high-stakes math assessment.  Although math calculation accounted for a larger percentage of 

variance for overall performance on the mathematical portion of the California STAR, word 

problem accounted for a significant and additional amount of variance on the criterion.  

Secondly, the AUC of word problem CBM and California STAR ranged from .80 to .83.  AUC 

of .80 or higher are considered sufficient to identify student who are at-risk and in need of 

intervention.   

Jitendra et al. (2014) also examined the reliability and validity of a word problem solving 

measure for the purpose of universal screening and progress monitoring.  The word problem 

solving measure was administered to 136 third grade students every two weeks over the course 

of twelve school weeks.  Reliability of the word problem solving measure was moderate (.67 to 

.71).  The word problem solving measure demonstrated weak to moderate validity coefficients 

(.23 to .64).   

Due to limited research studying word problems as a universal screening instrument, 

more research is recommended.  However, word problem CBM will likely play a significant role 

as gated evaluation systems and universal screening and progressing monitoring practices for 

older elementary and secondary students become more prevalent.  Another area which requires 

more research but is likely to play a significant role in universal screening procedure is 

Computer Adaptive Testing (CAT). 

Computer Adaptive Testing 

The topic of computer administered verse paper-pencil administration was explored by 

Shapiro, Dennis, and Fu (2015).  The researchers compared student performance on a CAT 

assessment, STAR-Math, with performance on a paper-pencil math CBM, AIMSweb Math 
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Computation and AIMSweb Math Concepts/Applications (Shapiro et al., 2015).   Both measures 

were administered to between 82-92 third graders, 71-84 fourth graders, and 64-74 fifth graders 

once a month for a seven month period.  The student sample participating in the study included 

those included in the regular education setting and students identified as having a specific 

learning disability receiving specially designed instruction in a learning support setting.  The 

researchers used Hierarchical Linear Modeling to compare the two measures.  Results indicated 

all three measures were able to reflect student growth over the course of the seven month period.  

When given immediately preceding the PSSA, STAR-Math demonstrated the strongest 

correlation with PSSA performance, with the exception of fifth grade.  The computation probes 

were shown to have the second highest correlation with PSSA, followed by the 

concept/application CBM (Shapiro et al., 2015).  Although more research is needed, initial 

research supports the use of CAT for universal screening and progress monitoring.  This study 

also supported the use of computation based CBM and concept/application focused CBM for 

universal screening and progress monitoring purposes. 

Summary 

 Mathematical deficits remain persistent in students who are low-achieving, and the 

performance gap widens as students continue through school if not addressed with robust 

instruction and intervention.  Early identification and intervention to address mathematical 

difficulties is paramount.  Research indicates students who initially place in the bottom 10th 

percentile when entering kindergarten but were performing above the 10th percentile upon 

exiting only had a 30% chance of performing below the 10th percentile five years later while in 

fifth grade (Morgan et al., 2009, 2011).  Without intervention in kindergarten, however, students 

who demonstrate math skills within the bottom 10th percentile in kindergarten have a 70% 
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likelihood of remaining below the 10th percentile five years later (Martin et al., 2012; Morgan et 

al., 2009; 2011).  This highlights the needs for early identification and intervention.  MTSS/RTI 

systems employ universal screening measures to identify students who may be at-risk for 

developing deficits for the purpose of early intervention. 

 Universal screening measures should be able to identify potential academic, behavioral, 

or emotional concerns in need of additional assessment or identify students who are at-risk of 

difficulty.  Ideally, universal screening measures should be able to answer the following 

questions: How is each student responding to core instruction?  How many students are at-risk 

for failure?  Is core instruction effective?  Which students are in need of additional assessments?  

What levels of resource support might be needed to promote criterion-level performance?   

 In terms of data use, effective universal screening tools generate data that are accessible 

to teachers and can be used to differentiate instruction.  Effective implementation of universal 

screening practices requires an expectation or school culture that teachers use data to align 

instructional resources.  Staff should be provided with training to administer, score, and interpret 

the results of universal screening.  Universal screening measures should be based on universal 

design.  In practice, this translates to an instrument that is given in individual or preferably group 

format to most students in an entire classroom, grade, school, or district with sources of bias 

eliminated.  Psychometric properties of an adequate universal screening measure require 

reliability of .70 or higher, sensitivity to changes in student performance, distinction between the 

proficiency levels of students, and reflection of essential components of the curriculum (Ikeda et 

al., 2008).   

The present study builds on previous research utilizing MBSP-C probes (Fuchs, Hamlett, 

& Fuchs, 1999) as a universal screening measure.  In a 2007 literature review, MBSP-C (Fuchs 
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et al., 1999) was the most frequently used measurement tool for elementary mathematics and the 

only tool used in studies focused on the use of CBM data to improve student achievement 

(Foegan et al., 2007).  The state mandated assessment is explored with the predictive validity 

with a previously established criterion measure.  Given inconsistent findings regarding the role 

of sex and socio-economic status on students’ mathematical proficiency, these factors are further 

investigated. 
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CHAPTER III 

METHODS AND PROCEDURES 

Introduction 

 The predictive validity of a timed, mixed computation math instrument, Monitoring Basic 

Skills Progress, Computation (MBSP-C) with the Pennsylvania System of School Assessment 

(PSSA) was examined in this study to determine its predictive strength as a universal screening 

instrument.  The amount of variance in student performance that could be attributed to sex and 

socio-economic status (SES) or resource availability was also explored.  This chapter provides a 

detailed explanation of the methods used to answer this research question, including the sample, 

research site, measures used, and procedures employed.   

Design 

 This is a correlational, longitudinal research design.  Anonymous archival data were used 

to determine the predictive strength of a brief computation probe administered in the fall, winter, 

and spring of first, second, and third grade with PSSA-M performance administered in the spring 

of third grade.  The influence of sex and resource availability on the relationship between the 

MBSP-C and PSSA-M was also considered given the equivocal results regarding their role in 

mathematics achievement. 

 The universal screener utilized in this study assessed computation of mathematical facts 

with increasing complexity for each grade.  The National Resource Council (2002) defines 

computation or computing as “carrying out mathematical procedures, such as adding, 

subtracting, multiplying, and dividing numbers flexibly, accurately, and appropriately” (p. 11).  

Computing supports understanding of math, and it was hypothesized that a computation probe 

would be a strong measure of performance on a state-administered academic achievement test. 
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High achievement on the PSSA-M requires an understanding of all five mathematical strands: 

conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and 

productive disposition.  Student performance was assessed/measured from first through third 

grade for multiple reasons.  The study began with students in first grade because, even though 

students begin to develop mathematical understanding prior to entering school, formal 

instruction of basic math facts is not introduced until the middle or end of kindergarten.  The 

sooner intervention is made available to at-risk students, the better the learning outcome.  The 

opportunity to provide early intervention to first grade students who may be at-risk for low math 

achievement in third grade was another reason first grade student data were included in this 

study.  Secondly, the validity of computation measures improves dramatically when 

administered to first grade students as opposed to kindergarten students (Gersten et al., 2012).  

To be successful in math, students need to develop all five mathematics strands while in 

elementary and middle school.  There is a substantial amount of literature that supports the 

development of the strands before the end of third or fourth grades, with established arithmetic 

skills by the end of third grade (Martin et al., 2012; Morgan, Farkas, & Wu, 2009).  Based on 

this assumption, students should demonstrate adequate computation skills prior to the end of 

third grade. 

The Every Student Succeeds Act (ESSA) mandates standardized academic assessment in 

third grade through eighth grade.  Therefore, third grade is the first opportunity educational 

systems have to gather criterion data on a large scale without imposing additional assessments.  

For practical application purposes, student scores are examined while in third grade to increase 

the opportunity for math intervention before the fourth grade year.   
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Population 

The results of this study were intended for generalization to students in first through third 

grades in Pennsylvania.  The population was based on students in school districts who were in 

need of a universal screening instrument for the early identification of students who are at-risk 

for mathematical deficits to provide academic intervention.  Given the inclusion of sex and free 

and reduced meal status, which represents SES as variables in this study, the results should 

generalize to all students who are of similar SES backgrounds to the sample.   

Study Site 

The data were collected from a rural school district in Pennsylvania.  The school district 

is not named to safeguard the confidentiality of study participants and the study site.  The district 

consists of three elementary schools serving kindergarten through fourth grade, one intermediate 

school which houses grades 5 and 6, one middle school for grades 7 and 8, and a high school 

(grades 9 through 12).  Approximately 3,900 students were enrolled in this school district during 

the 2010 through 2014 school years.  Of those students, 11.4% to 12.5% were identified as 

receiving special education services, which was below the state average of 15.1% to 15.4% 

(Pennsylvania Department of Education, 2012, 2013, 2015).  Less than 1% of students were 

identified as English Language Learners (ELL; National Center for Educational Statistics, 2015).  

Approximately 26% of the school population received free or reduced meals.  The median 

household income across the district ranged from $65,169 to $72,422 (U.S. Census, 2014).  

Complete demographic data for each year archival data were gathered is summarized in Table 1. 
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Table 1 

District Demographic Data for the 2010-2011 Through 2013-2014 School Years 
 

 2010 – 2011 2011 – 2012 2012 – 2013 2013 – 2014 
Total Enrollment 3,941 3,941 3,919 3,929 

Total Special 
Education 
Enrollment 

12.5% 12.1% 11.8% 11.4% 

Free Lunch 16% 21% 21% 25% 
Reduced Lunch 10% 10% 7% 7% 

American 
Indian/Alaska 

Native 
0.6% 0.6% --- --- 

Asian 0.7% 0.7% 0.8% 0.6% 
Black or African 

American 
3.9% 3.9% 3.2% 3.2% 

Hispanic 3.3% 3.3% 4.1% 4.7% 
Multiracial --- --- 1.6% 2.2% 

Native Hawaiian 
or Other Pacific 

Islander 
--- --- --- --- 

White 91.1% 91.1% 90.0% 89.1% 
Note.  --- n = 10 or less  

Sample 

Anonymous and archival data from the 2010-2011 through 2013-2014 school years were 

examined in this study.  The same math curriculum and instructional materials were adopted at 

all three participating elementary schools.  As a result, all students received the same 

instructional content while enrolled in the study site for the aforementioned years.  All students 

contained within the sample received instruction from teachers and school professionals who 

held the appropriate Pennsylvania teaching certification during the period of archival data 

collection. 
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Inclusion Criteria  

All archival and anonymous data from students in grades 1-3 enrolled at participating 

schools during the 2010-2011 through 2013-2014 school years were examined.  All students who 

completed at least one of the three administrations, fall, winter, and spring, of MBSP-C during 

their first, second, or third school year and took the PSSA-M in the spring of third grade were 

included in the data set. 

Exclusionary Criteria  

Exclusionary criteria were based on the availability of the anonymous and archival data.  

Students without any MBSP-C, all demographic data, or PSSA-M scores were excluded from 

this study.  Data were included for analysis as long as all demographic data (i.e., sex, 

Individualized Education Program [IEP] status, and free and reduced meal status), PSSA-M 

performance in third grade, and at least one MBSP-C probe were available.  Rates of attrition 

ranged from 4% within the third-grade comparison to 24% from the first-to-third-grade 

comparisons.  Attrition rates included students with missing data and those who moved out of the 

study site.  Analyses of PSSA-M Total and Geometry were not performed from the 2013-2014 

academic year because Geometry was not a reported domain on that year’s test (Data 

Recognition Corporation, 2014).  Table 2 and Table 3 display the demographic composition of 

the sample with and without 2013-2014 data, respectively. 
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Table 2 

Demographics of Sample With 2013-2014 PSSA Data  

 First Grade Second Grade Third Grade  

 n % n % n % 
Total Sample Size 506  815  1205  
     Male 274 54% 432 53% 631 52% 
     Female 232 46% 383 47% 574 48% 
Free and Reduced Meal 163 32% 271 33% 422 35% 
IEP Status    
     Autism Spectrum Disorder --- --- --- --- --- --- 
     Emotional Disturbance --- --- 10 1% 14 1% 
     Hearing Impairment --- --- --- --- --- --- 
     Other Health Impairment --- --- --- --- --- --- 
     Specific Learning Disability 47 9% 86 11% 120 10% 
     Speech and Language Disability    18 4% 28 3% 36 3% 
Gifted IEP 26 5% 43 5% 74 6% 
504 Plan 16 3% 25 3% 36 3% 
Ethnicity    
     Asian --- --- --- --- 10 0.8% 
     Black/African American 19 4% 23 3% 40 3% 
     Hispanic 25 5% 37 5% 54 4% 
     Multi-racial  --- --- --- --- 16 1% 
     Native American Indian --- --- --- --- --- --- 
     White  449 89% 738 91% 1082 90% 

Note.  --- n = 10 or less; PSSA-M = Pennsylvania System of School Assessment; IEP = Individualized Education 
Program. 
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Table 3 

Demographics of Sample Without 2013-2014 PSSA Data  

 First Grade Second Grade Third Grade 

 N % n % N % 
Total Sample Size 272  558  929  
     Male 138 51% 290 52% 477 51% 
     Female 134 49% 268 48% 452 49% 
Free and Reduced Meal  79 29% 180 32% 317 34% 
IEP Status    
     Autism Spectrum Disorder --- --- 17 3% --- --- 
     Emotional Disturbance --- --- --- --- 11 1% 
     Hearing Impairment --- --- --- --- --- --- 
     Other Health Impairment --- --- --- --- --- --- 
     Specific Learning Disability 21 8% 57 10% 86 9% 
     Speech and Language Disability --- --- 17 3% 25 3% 
Gifted IEP 16 6% 33 6% 64 7% 
504 Plan --- --- 16 3% 27 3% 
Ethnicity   
     Asian --- --- --- --- --- --- 
     Black/African American --- --- 13 2% 25 3% 
     Hispanic --- --- 28 5% 40 4% 
     Multi-racial  --- --- --- --- 13 1% 
     American Indian --- --- --- --- --- --- 
     White  254 93% 507 91% 844    91% 

Note.  --- n = 10 or less; PSSA-M = Pennsylvania System of School Assessment; IEP = Individualized Education 
Program. 

Assignment  

This study used a convenience sample of anonymous, archival data.  Students were 

assigned to data groups based on grade level, sex, and free and reduced meal status.  The PSSA 

technical manuals from 2010 through 2014 were reviewed for any significant changes that would 

prevent aggregation of the data from multiple years into one data set.  The PSSA remained 

relatively unchanged for third grade students from 2010 through 2012 (Data Recognition 

Corporation, 2011, 2012).  During the 2012-2013 school year, Pennsylvania officially adopted 

the Pennsylvania Core Standards (PCS), which is reflected in the format of the PSSA, but not 

content (Data Recognition Corporation, 2013).  The introduction of an English Language Arts 
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assessment to replace PSSA Reading and PSSA writing was the most significant change for third 

grade students in 2012-2013 (Data Recognition Corporation, 2014).  There were no significant 

changes to the 2012-2013 PSSA-M with the adoption of PCS.  Given that the PSSA-M did not 

substantively change from 2010 to 2013, outcome data from multiple years were combined into 

one data set.  Please refer to Table 4, which depicts cohort data for each year and grade MBSP-C 

was collected and the year each cohort took the PSSA. 

The 2014 PSSA technical manual indicated Geometry as a reported domain, but no 

Geometry scores were reported for PSSA-M administered to third grade students in 2014.  

According to the PSSA technical manual this was due to the transition from the previously used 

standards to the newly adopted PCS.  The technical manual provided the following explanation, 

“However, the scores for 2014 had to align to both the current set of standards and the next set of 

standards.  As such, there were some strands that ended up with zero items eligible for use in 

mathematics and therefore no items for those strands were selected for the 2014 cores” (Data 

Recognition Corporation, 2014, p. 266).  Consequently, PSSA data from the 2013-2014 year 

were excluded from the data set for analysis of PSSA-M Composite score and Geometry data.  

Table 5 provides a visual summary of what data were collected for each school year included in 

this study.  All other scores on the 2014 PSSA-M were comparable to their counterpart scores in 

the previous PSSA-M administrations included in this study.   
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Table 4 

Student Cohort Data for Years and Grade of MBSP-C and Year of PSSA Administration 

MBSP-C Grade Year of PSSA administration (3rd grade) 
2010 – 2011  1 2013 
2011 – 2012  1 2014 
   
2010 – 2011 2 2012 
2011 – 2012  2 2013 
2012 – 2013  2 2014 
   
2010 – 2011  3 2011 
2011 – 2012  3 2012 
2012 – 2013  3 2013 
2013 – 2014  3 2014 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics 
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Table 5 

Summary of Data Collected by Year and Grade  

Year/ 
Grade 

MBSP-C 
Fall 

MBSP-C 
Winter 

MBSP-C 
Spring 

PSSA-
M 

Numbers and Operations Measurement Geometry 
Algebraic 
Concepts 

Data Analysis and 
Probability 

A.1 A.2 A.3 B.1 B.2 C.1 C.2 D.1 D.2 E.1 
10-11 

1st  
Grade 

 
X  

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

11-12 
1st  

Grade 
 

X  
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
No 

Data 
No 

Data 
 

X 
 

X 
 

X 
10-11 

2nd  
Grade 

 
X  

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

11-12 
2nd  

Grade 
 

X  
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
12-13  

2nd 
Grade  

 
X  

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

No  
Data 

No 
Data 

 
X 

 
X 

 
X 

10-11 
3rd  

Grade 
 

X  
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
11-12 

3rd  
Grade 

 
X  

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

12-13  
3rd  

Grade  
 

X  
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
13-14 

3rd  
Grade  

 
X  

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 
X 

 No 
Data 

No 
Data 

 
X 

 
X 

 
X 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School Assessment, Mathematics; A.1, A.2., A.3, 
B.1, B.2., C.1, C.2, D.1, D.2, and E.1 denote standard anchors.  X indicates data were available and collected.  No Data indicates data were not available because 
it was not a reported by the PSSA. 
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Measurement 

Dependent variable  

Mathematics achievement was measured by the math composite score on the PSSA-M 

instrument in addition to scores on the five subtests that are aggregated into the composite score.  

Mathematics achievement was divided into five subtests established by the PSSA: Numbers and 

Operations, Measurement, Geometry, Algebraic Concepts, and Data Analysis and Probability 

(State Board of Education, 2015).  The dependent or criterion variables of the current study 

include the PSSA-M Numbers and Operations achievement score, the PSSA-M Measurement 

achievement score, the PSSA-M Geometry achievement score, the PSSA Algebraic Concepts 

achievement score, the PSSA-M Data Analysis and Probability achievement score, and the 

PSSA-M Composite score.  Data were obtained from archival school records. 

Numbers and Operations is a subtest of the PSSA-M in which students demonstrate an 

understanding of numbers, ways of representing numbers, understanding of relationships among 

numbers and number systems, comprehension of meanings of operations, use of operations and 

understanding how they relate to each other, and the ability to make estimates.  Students are also 

expected to solve computation problems with accuracy and fluency.  The Measurement subtest 

assesses student understanding of measureable qualities of objects and units of measure.  

Students are expected to demonstrate the ability to measure objects using appropriate tools and 

techniques.  This subtest includes calculation of time and elapsed time, length, area, volume and 

weight of objects, and use of a ruler.  Geometry is a subtest of the PSSA-M which measures a 

student’s ability to evaluate the defining features of two- and three- dimensional geometric 

shapes.  Students are also expected to exhibit knowledge of geometric shapes, the relationships 

between geometric shapes, and concepts of symmetry and transformations.  Algebraic Concepts 
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is a subtest of PSSA-M which measures a student’s ability to demonstrate an understanding of 

patterns and relationships between numbers and their functions.  Students are also expected to 

use numbers, symbols, words, tables, and graphs to investigate mathematical situations.  The 

Data Analysis and Probability subtest of PSSA-M requires students to organize, display, interpret 

or analyze data in order to answer mathematical questions (Data Recognition Corporation, 2014). 

Test protocols are returned to Pennsylvania Department of Education (PDE) to be scored.  

Individual student raw scores are converted to scaled scores for final reporting.  Raw scores are 

converted to scaled scores in a two-step process.  First, raw scores are converted to Rasch 

abilities.  The Rasch model is a form of item response theory which takes into account the 

difficulty of each response item.  Rasch logits are not reported because the use of negative 

numbers and decimals makes them more difficult for a layperson to understand.  Therefore, 

Rasch scores are then converted to scaled scores using linear transformation techniques (Data 

Recognition Corporation, 2014). 

Scores on the PSSA are divided into four performance level descriptors, Below Basic, 

Basic, Proficient, and Advanced.  A score falling within the Below Basic level indicates partial 

and selective understanding of the skills represented on the third grade mathematics portion of 

the PSSA.  A Basic score suggests a student is able to solve basic and routine problems through 

application of the skills covered in the third grade of the PSSA-M (State Board of Education, 

2015).  Students at this performance level demonstrate the ability to use place-value to round, 

order, and add and subtract whole numbers without regrouping.  Further, students performing at 

the Basic level can typically solve simple computation problems, identify fractions, and match 

mathematical equations with real world situations.  Students at this performance level are able to 
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read and interpret data represented in visual displays, tell time with an analog clock, measure 

lengths, and count money.   

A score in the Proficient range suggests a student demonstrates problem solving of 

practical and real-world problems.  Skills characteristically demonstrated by students who 

perform within the Proficient range include use of place value to add, subtract, and multiply 

whole numbers; application of computation skills to solve word problems; understanding and 

identification of fractions; calculation of elapsed time; capacity to round monetary amounts; 

ability to measure and estimate mass, length, and liquid volume; and ability to organize, display, 

and translate visually represented data to solve problems.  A scaled score within the Advanced 

range on the third grade PSSA indicates a student is able to demonstrate complex problem 

solving and an in-depth understanding of the skills, concepts, and procedures encompassed in the 

five reporting categories that compose the PSSA-M.  Typically students performing at the 

Advanced level are able to can use addition, subtraction, multiplication, and division to solve 

multistep word problems; represent fractions multiple ways; explain arithmetic patterns; use 

symbols to represent unknown quantities; solve for missing values; apply order of operations 

when problem solving; and solve for area.  Students also demonstrate the skills required to 

calculate change, elapsed time, and use units of measure to display data and problem solve (State 

Board of Education, 2015).   

As previously noted, raw scores are converted into scaled scores using the two-step 

process.  Performance levels are then determined based on cut scores generated from the range of 

possible scaled scores.  Table 6 depicts the cut-offs for scaled scores in each descriptive 

category.   

 

 



 

130 

Table 6 

PSSA Descriptive Category Cut-off Scores  

 2010-2011 2011-2012 2012-2013 2013-2014 
Advanced  1370 1370 1370 1370 
Proficient  1180 1180 1180 1180 
Basic  1044 1044 1044 1044 
Score Range  750-1832 750-1843 750-1859 750-1914 

Note.  Score Range represents the range of possible scores; PSSA = Pennsylvania System of School Assessment. 
 
 Reliability of PSSA.  Overall consistency of the PSSA is moderate to strong with a 

reliability coefficient of .76.  Decision consistency for classification scores on third grade 

mathematics is strong with reliability coefficients that ranged from .84 to .98.  Decision 

consistency likelihood that a student will be classified as proficient or not on another version of 

the PSSA or test measuring the same skills. The inter-rater reliability of third grade PSSA-M is 

strong with reliability coefficients that ranged from .91 to .96 (Data Recognition Corporation, 

2011, 2012, 2013, 2014).  These reliability coefficients indicate the third grade PSSA-M is a 

reliable measure.   

 Validity of PSSA.  The validity of the PSSA-M ranged from moderate to strong when 

correlated with the Stanford Achievement Test (SAT) correlation coefficients ranged from .70 to 

.90.  The internal consistency of the PSSA-M is moderate to strong (.55 to .95).  The content of 

the PSSA-M was also found to be strongly linked to eligible content, the Pennsylvania Common 

Core Standards, which indicated strong content validity.  A case can also be made for moderate 

to strong consequential validity, as the percentage of students who scored within the proficient or 

advanced range has improved consistently since 2007 (Data Recognition Corporation, 2014).   

Independent Variables   

There are no manipulated independent variables in this study.  However, the MBSP-C 

data, sex, free and reduced meal status, and grade will act as independent predictor variables 
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when performing statistical analysis.  All data are archival, and there is no treatment.  Given the 

nature of the study, the MBSP-C data at any given assessment period across first through third 

grade are predictor variables.  

 Monitoring Basic Skills Progress.  Monitoring Basic Skills Progress (Fuchs, Hamlett, & 

Fuchs, 1998, 1999) are a series of parallel form progress monitoring probes available for 

computation (MBSP-C) and Concepts and Application (MBSP-CA).  MBSP-C was used in this 

study.  A review of the existing literature indicates MBSP-C demonstrates favorable qualities of 

a universal screening instrument.  However, due to concerns with small sample size and 

exclusion of students with disabilities from previous studies, more research is needed to confirm 

favorable characteristics.  MBSP-C offers 30 parallel forms for use in grades 1 through 6.  Fuchs 

et al. (1998, 1999) developed the measures by selecting a sampling of computation problems 

represented within Tennessee’s state standards for each grade level.  Probes can be group 

administered with standardized directions.  Administration time is 2 minutes for grades 1 and 2, 

3 minutes for grades 3 and 4, 5 minutes for grade 5, and 6 minutes for grade 6.   

 The skills represented on each MBSP-C remain consistent for each parallel form and 

sample computation skills students are expected to master throughout that grade level.  The first 

grade computation probes consist of nine basic addition problems (i.e., 3 + 2 =), two addition 

problems with three addends (i.e., 1 + 3 + 4 =), two addition without regrouping problems (i.e., 

33 + 4 =), 10 basic subtraction problems (i.e., 9 – 8 =), and two subtraction without regrouping 

problems (i.e., 44 – 3 =).  The second grade probes consist of seven basic addition fact problems 

with two or more addends, three addition without regrouping problems, two addition with 

regrouping problems (i.e., 45 + 38 =), seven basic subtraction problems, three subtraction 

without regrouping problems (i.e., 45 – 4 =), or three addition with regrouping problems (i.e., 34 
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– 8 =).  Third grade computation probes consist of three addition with regrouping problems, 

three subtraction with regrouping problems, two subtraction with regrouping using 0 (i.e., 407 – 

298 =), nine basic multiplication fact problems (i.e., 4 x 4 =), two multiplication with regrouping 

problems  (i.e., 56 x 4 =), and six problems of basic division facts (i.e., 42 ÷ 6 =).  While all 

alternative forms of MBSP-C probes contain the same type and amount of each problem for each 

grade level to ensure a consistent level of difficulty, the order they are presented is randomized 

(Fuchs et al., 1998, 1999). 

 MBSP-C can be scored for problem correct or digits correct.  This study focuses on digits 

correct because it is more sensitive to growth and change over time.  Fuchs et al. (1998, 1999) 

published normative digits correct scores for the MBSP-C probe.  According to these data, 

average scores (25th to 75th percentile) in the fall of first grade range from five to 12 digits 

correct, eight to 20 digits in the winter, and 11 to 25 digits correct in the spring.  In the fall of 

second grade, average digits correct range from seven to 14, average digits correct in the winter 

ranges from 13 to 24, and 16 to 31 digits correct in the spring.  Average digits correct in third 

grade ranges from nine to 19 in the fall, 13 to 26 in the winter, and 22 to 37 in the spring.  

Normative digits correct scores for MBSP-C are summarized in Table 7. 

Table 7 

MBSP-C Normative Digits Correct Scores for First Through Third Grade 

Grade Percentile Fall Winter Spring 

1 
25th 5 8 11 
50th 8 14 17 
75th 12 20 25 

2 
25th 7 13 16 
50th 11 19 23 
75th 14 24 31 

3 
25th 9 13 22 
50th 13 21 29 
75th 19 26 37 
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 Foegen et al. (2007) identified MBSP-C as a curriculum sampling measure because it was 

developed from a set of state standards (Fuchs et al., 1999; Jiban et al., 2007).  However, MBSP-

C demonstrates characteristics of a robust indicator or general outcome measure.  Therefore, it 

can generalize to more educational settings than just those adopting the state curriculum from 

which it was developed.  General outcome measures in mathematics are an area that requires 

more research.  There is a consensus in existing research that basic computation and arithmetic 

skills are bottleneck skills which demonstrate moderate to strong correlations with future math 

achievement outcomes (Geary, 2004; Geary, et al., 2012; Mazzocco, Devlin, & McKenney, 

2008; Mazzocco & Thompson, 2005).   

Reliability of MBSP-C.  MBSP-C has consistently demonstrated strong test-retest 

reliability in students with (.73 to .92) and without disabilities (.73 to .88), indicating universal 

design.  Correlations for aggregated odd/even scores are also strong in students with (.91 to .97) 

and without disabilities (.81 to .88).  It is important to note a small sample size (n = 79) of 

students with disabilities was used to establish reliability.  Of the 75 students, 54 had been 

identified as having a specific learning disability and 25 students had been diagnosed as having a 

behavior disorder.  A larger sample size was used to determine reliability in students not 

identified as having a disability (n = 1,145).  Both studies included students in first through sixth 

grade.  A literature review indicated MBSP-C consistently demonstrated strong reliability 

coefficients for internal consistency (.94 to .98) and alternate form (.73 to .93; Foegen et al., 

2007).   

Validity of MBSP-C. Five major types of validity should be considered when selecting a 

universal screening measure: content validity, validity based on response processes, internal 

structure validity, validity based on relations to other variables, and consequential validity 
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(Albers & Kettler, 2014).  The validity of MBSP-C was assessed by its authors through content 

and criterion validity analyses (Fuchs et al., 1999).  The content validity was reviewed by regular 

education teachers, special education teachers, and curriculum supervisors from four school 

districts.  There was a recommendation from one school district that one problem be deleted 

from two grade levels.  Based on this feedback, the authors determined the content validity of 

MBSP-C to be adequate.   

To determine criterion validity, the authors correlated the results of MBSP-C probe with 

three previously established math measures, Math Computation Test (MCT) (Fuchs, Fuchs, 

Hamlett, & Stecker, 1991) and two subtests of the Stanford Achievement Test (SAT).  This 

analysis was conducted using the data from 65 students who had been identified as having mild 

to moderate disabilities, 50 with a specific learning disability, and 15 with an emotional 

disturbance (Fuchs et al., 1999).  The sample consisted of students in second through fifth grade.  

The results, summarized in Table 8, indicate a moderate to strong correlation between student 

performance on MBSP-C and previously established measures of mathematical achievement.  

Due to the small sample size, additional study of the criterion validity of this instrument is 

warranted; hence the purpose of the current investigation.  

Table 8 
 
Validity of MBSP-C 
 
Group N MCT-PROB MCT-DIG SAT-NC SAT-MC 
Grade 2 10 .91 .84 .88 .93 
Grade 3 19 .81 .87 .67 .55 
Grade 4 24 .89 .84 .49  .60 
Grade 5 12 .66 .77 .59  .59  
Total 65 .82 .88 .66 .67 

Note. MCT = Math Computation Test; PROB = problems correct; DIG = digits correct; SAT = Stanford 
Achievement Test; NC = Concepts of Number subtest; MC = Math Computation subtest; numbers in boldface are 
statistically significant. 
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 The validity of MBSP-C was further explored by Shapiro et al. (2006).  MBSP-C 

administered in third grade demonstrated moderate correlations with the third grade state 

assessment (.41 to .53) and strong positive predictive power (.68 to .88).  Given the nature of 

universal screenings, a validity coefficient alpha of .70 or higher is considered acceptable, so 

these findings are considered to support the use of computation measures as universal screening 

instruments (Albers & Kettler, 2014).   

 Sex and free or reduced meal status.  All independent variables are continuous with the 

exception of sex and free or reduced meal status, which are nominal.  Sex is unchanging and free 

or reduced meal status, which represents resource availability, is not easily changed, but both are 

likely to have a significant effect on MBSP-C and PSSA-M performance.  An analysis of the U.S 

National Assessment of Educational Progress (NEAP) from 1990 to 2003, found that sex gaps 

within math achievement continue to exist, with males performing slightly better than females, 

especially in the upper end of score distributions.  Performance sex gaps were largest in the areas 

of measurement, number and operations, and geometry.  The same analysis found significant 

disparities between achievement gaps in different socio-economic groups (McGraw, Lubuenski, 

& Strutchens, 2006).   

 Previous research indicates that math performance is significantly related to sex and free 

or reduced meal status which represents SES or resource availability.  Consequently, these 

variables were included with the MSBP-C to fully appraise the relationship between relevant 

dependent variables and PSSA-M performance. 

Procedure 

 Archival anonymous data were examined for this study.  Student data, including MBSP-

C scores for the fall, winter, and spring across first through third grades, third grade PSSA-M 
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scores, sex, and free or reduced meal status for the 2010-2011 through 2013-2014 school years 

were gathered by the school district’s data secretary and provided to the primary researcher with 

all identifying information removed.  Student data sets were assigned generic numerical codes, 

i.e., 1, 2, 3, etc. to ensure anonymity.  At no point was the primary researcher given access to 

identifying information.  

Data Collection  

 Universal screening data collection occurred three times per year: fall, winter, and spring 

of every year for all students.  Within each testing period, all students were assessed within a 

two-week testing window.  Students who were absent during group administration of a MBSP-C 

probe completed the screening instrument with the intervention support teacher in a small group 

or one-on-one setting within that two-week testing window.  Administration at all three 

elementary schools was performed by the same teacher who used the scripted directions 

provided in Appendix B.  The PSSA was administered in the spring of third grade, during the 

testing window provided by PDE.  The testing windows of the archival PSSA data were: March 

14th-25th for the 2010-2011 school year, March 12th-23rd for the 2011-2012 school year, April 8th-

18th for the 2012-2013 school year and March 17th-28th for the 2013-2014 school year. 

 Beginning with the 2012-2013 school year, all teachers who proctored the PSSA were 

required to complete an online training program developed and monitored by PDE to maintain 

the integrity of standardized administration.  The online training consisted of three interactive 

modules followed by a quiz.  The three modules were Preparing to Administer the Assessment; 

Administering the Assessment; and After the Assessment.  Modules were completed in 

sequential order.  At the conclusion of the training modules, participants were prompted to take a 

quiz.  After completion of the quiz, a certificate verifying participation and achievement was 
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generated.  This certificate was printed and submitted to the school assessment coordinator.  

Prior to the 2012-2013 school year, the same content was provided to teachers by building 

administrators in the forum of a facility meeting using a PowerPoint presentation developed by 

PDE.  The building administrators were required to attend a PSSA administration training prior 

to reviewing the PowerPoint with staff.  PDE required building administrators to document that 

the information in the PDE-developed PowerPoint presentation was disseminated to staff 

proctoring the PSSA.  This building administrator facilitator training is still provided in addition 

to the online training program.  These requirements by PDE, to which the district complied, 

increase the likelihood that the PSSA was administered in a standardized manner and strengthen 

the integrity of data used for this investigation. 

Data Analyses 

Correlations were generated for the PSSA-M composite score, five subtest scores, and 

MBSP-C to determine the strength of the relationship between all scores.  This analysis provided 

more specific information regarding MBSP-C predictive power.  

Regression analysis was used to determine the regression equation.  This is then used to 

predict a score on the bases of one or more other score.  Multiple linear regression (MLR) 

analysis designates a linear relationship between one or more predictor variable and the criterion 

variable.  A linear relationship means a straight line can be drawn through the data representing 

the relationship between the predictor and criterion variable.   

Research Question   

 The broad research question under investigation in the current study is: To what extent 

does a universal mathematics screening, MBSP-C, in first, second, and third grade, sex, and free 

or reduced meal status predict math achievement as reported on the five components of the 
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PSSA-M in third grade?  It is hypothesized that MBSP-C scores in first, second, and third grade 

will predict math achievement as measured by the five components of the PSSA-M in third 

grade.  It is hypothesized that student performance in the fall of first grade will have the weakest 

correlation with PSSA-M performance and student performance in the spring of third grade will 

have the strongest correlation with third grade PSSA-M achievement due to time proximity 

between MBSP-C and PSSA-M administration.  When validating a number sense screening tool 

for use in kindergarten and first grade, Jordan et al. (2010) found a significant increase in the 

main effect over the course of six administrations as students demonstrated age-appropriate 

changes in achievement.   

The variables considered within this research question included MBSP-C – Fall, Winter, 

and Spring in first, second, and third grade; PSSA-M Numbers and Operations score; PSSA-M 

Measurement score; PSSA-M Geometry score; PSSA-M Algebraic Concepts score; PSSA-M 

Data Analysis and Probability score; and PSSA-M Composite score.  It is hypothesized that 

MBSP-C will have the strongest correlation with the numbers and operations portion of the 

PSSA-M.  The numbers and operations section of the PSSA-M asks students to demonstrate an 

understanding of numbers, ways of representing numbers, relationships among numbers and 

number systems, meanings of operations, use of operations and understanding how they relate to 

each other, the ability to compute accurately and fluently, and the capacity to make reasonable 

estimates.  These skills closely resemble those assessed on the MBSP-C probes.  Therefore, the 

relationship between MBSP-C and the Numbers and Operations subtest of the PSSA-M will be 

the strongest.  It is further hypothesized that sex and free or reduced meal status will have a 

moderate association with math achievement, based on highlights from the 2007 Trends in 

International Mathematics and Science Study (Gonzales et al., 2009).      
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Assumptions   

 Several statistical assumptions were confirmed to appropriately utilize multiple 

regression analysis (Huck, 2008).  It is assumed the dependent variable in this study is measured 

on a continuous scale.  It is assumed the data from independent variables are continuous or 

categorical in nature.  It is assumed that data were independently observed and collected, that the 

relationship between the variables is linear, and that multicollinearity of the data is not present.  

It is further assumed that data demonstrated homoscedasticity with no significant outliers or high 

leverage points, and residuals were normally distributed.   

The following steps were taken to determine that these assumptions were met: The data 

were reviewed for outliers, descriptive statistics were reviewed, histograms were inspected for 

normality, pairwise comparisons within a scattergram were examined, the correlation matrix was 

examined for multicollinearity, and the Durbin-Watson statistic was calculated.   

Stepwise multiple linear regression analyses were run to examine the predictive 

relationship of the MBSP-C probe and PSSA-M performance in the spring of third grade.  

MBSP-C, free and reduced meal status, and sex functioned as the independent or predictor 

variables.  PSSA-M is the dependent or criterion variable.  Predictor variables are entered into a 

stepwise MLR based on their ability to account for specific variance in the outcome variable or 

the variance that is not already predicted by predictor variables that are already entered in the 

equation (Leary, 2001).  The predictor variable with the strongest correlation to PSSA-M was 

entered first during the stepwise MLR.  The predictor variable entered in step 2 is the variable 

which accounts for the most variance beyond what has already been accounted for by the first 

predictor variable.  The third predictor variable added accounts for the variance beyond the 
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predictor variables entered in step 1 and step 2.  The beta weights will be examined to determine 

which variable is a stronger predictor once the assumptions have been confirmed.   

Summary 

 This chapter provides the methods and procedures used to answer the research question 

examining the predictive power of a computation probe, MBSP-C, sex, and free and reduced 

meal status in first, second, and third grade with the state assessment administered in the spring 

of third grade.  Descriptions of participant selection, demographics of the population and sample, 

research site, measures used, and procedure are provided.  The study design and data analysis are 

depicted, as well as possible study limitations. 
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Table 9 

Research Question, Hypothesis, and Variables 

Research Question Hypothesis Variables 
To what extent does a 
universal mathematics 
screening, Monitoring Basic 
Skills Progress – 
Computation (MBSP-C), in 
first, second, and third grade, 
sex, and socio-economic 
status predict math 
achievement as reported on 
the five math components of 
the Pennsylvania Standard of 
State Assessments (PSSA-M) 
in third grade? 
 

It is hypothesized that MBSP-
C scores in first, second, and 
third grade will predict math 
achievement as measured by 
the five components of the 
PSSA-M in third grade.  
It is hypothesized that student 
performance in the fall of first 
grade will have the weakest 
correlation with PSSA-M 
performance and student 
performance in the spring of 
third grade will have the 
strongest correlation with 
third grade PSSA-M 
achievement.  It is also 
hypothesized that MBSP-C 
will have the strongest 
correlation with the numbers 
and operations portion of the 
PSSA-M.  It is hypothesized 
that sex, resource availability 
will be associated with math 
achievement.    

 MBSP-C digits 
correct from Fall of 
first, second, and third 
grade 

 MBSP-C digits 
correct from Winter of 
first, second, and third 
grade 

 MBSP-C digits 
correct from Spring of 
first, second, and third 
grade 

 Third grade PSSA-M 
Composite Score  

 Third grade PSSA-M 
Numbers and 
Operations subtest 
score  

 Third grade PSSA-M 
Measurement subtest 
score 

 Third grade PSSA-M 
Geometry subtest 
score  

 Third grade PSSA-M 
Algebraic Concepts 
subtest score  

 Third grade PSSA-M 
Data Analysis and 
Probability subtest 
score  

 Sex 
 Free or reduced lunch 

status 
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CHAPTER IV 

DATA AND ANALYSIS 

 The strength of the predictive relationship between Monitoring Basic Skills Progress, 

Computation probe (MBSP-C), a math computation probe, administered in the fall, winter, and 

spring of first, second, and third grade with the Pennsylvania System of School Assessment in 

Mathematics (PSSA-M) administered in the spring of third grade was examined in this study.  

The predictive relationship of sex and socio-economic status (SES) with mathematical 

performance was also studied.  The predictive validity of MBSP-C administered in the fall, 

winter, and spring of first, second, and third grade, sex, and SES was analyzed to determine the 

predictive validity of MBSP-C and capacity to function as a universal screening instrument in 

mathematics.  The results of this research question are presented in this chapter. 

Results of Statistical Analysis 

Complications 

 There are two minor complications that should be acknowledged.  The first, second, and 

third grade cohorts are composed primarily of the same group of students.  However, they are not 

identical.  This means that the third grade PSSA-M data associated with each grade cohort is 

different.  In order to reflect these differences, separate analyses were completed for each grade 

level predicting third grade PSSA-M.  Therefore, the appropriate corresponding PSSA-M data is 

reported at each grade level.  Differences in student cohorts from grade to grade can be explained 

by student movement in and out of the school district.  Second, geometry was not a reported 

category on the 2014 third grade PSSA-M.  As a result, PSSA-M composite and geometry data 

from the 2013-2014 school year were excluded from analysis. 
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Test of Assumptions for Statistical Procedures 

 Data were analyzed with multiple linear regression (MLR).  Assumptions include the 

dependent variable in this study is measured on a continuous scale.  It is assumed the data from 

independent variables are continuous or categorical in nature.  It is assumed that data were 

independently observed and collected, that the relationship between the variables is linear, and 

that multicollinearity of the data is not present.  It is further assumed that data demonstrated 

homoscedasticity with no significant outliers or high leverage points, and residuals were 

normally distributed.   

The following steps were taken to determine that these assumptions were met: The data 

were reviewed for outliers, descriptive statistics were reviewed, histograms were inspected for 

normality, pairwise comparisons within scatterplots were examined, histograms of residuals and 

Normal P-P plots were examined for multicollinearity, and the Durbin-Watson statistic was 

calculated.   

 Performance on PSSA is reported as interval data thus meeting the assumption that the 

dependent variable is continuous.  All independent variables are continuous in nature, with the 

exception of sex and free and reduced lunch status which are nominal data.  Descriptive statistics 

are reported by grade of MBSP-C administration and corresponding third grade PSSA-M data.  

The data were examined visually with the use of frequency distributions and histograms.  It is 

important to note, the PSSA is a criterion referenced assessment.  Therefore, a negatively skewed 

distribution is expected and even desired since it suggests students successfully obtained the 

content being taught (Brown, 1997; Osborne, 2013).  It should also be noted, much higher 

skewness and kurtosis values are commonly accepted in research relating to social sciences 

(Byrne, 2010). 
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 First grade descriptive statistics.  Please refer to Figures 3 through 11 for histograms of 

MBSP-C data in the fall, winter, and spring of first grade in addition to the corresponding third 

grade PSSA-M composite data and PSSA subtest math data.   

 
Figure 3. Histogram of first grade Monitoring Basic Skills Progress-Computation fall data.  
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Figure 4. Histogram of first grade Monitoring Basic Skills Progress-Computation winter data. 

 
Figure 5.  Histogram of first grade Monitoring Basic Skills Progress-Computation spring data. 
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Figure 6.  Histogram of third grade 2013 Pennsylvania System of School Assessment, Mathematics composite data 
from students in first grade during the 2010 – 2011 school year. 

 
Figure 7.  Histogram of third grade 2013 and 2014 Pennsylvania System of School Assessment, Mathematics 
Numbers and Operations data from students in first grade during the 2010 – 2011 and 2011 – 2012 school years. 
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Figure 8.  Histogram of third grade 2013 and 2014 Pennsylvania System of School Assessment, Mathematics 
Measurement data from students in first grade during the 2010 – 2011 and 2011 – 2012 school years. 

 
Figure 9.  Histogram of third grade 2013 Pennsylvania System of School Assessment, Mathematics Geometry data 
from students in first grade during the 2010 – 2011 school year. 
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Figure 10. Histogram of third grade 2013 and 2014 Pennsylvania System of School Assessment, Mathematics 
Numbers and Operations data from students in first grade during the 2010 – 2011 and 2011 – 2012 school years. 

 
Figure 11. Histogram of third grade 2013 and 2014 Pennsylvania System of School Assessment, Mathematics Data 
Analysis and Probability data from students in first grade during the 2010 – 2011 and 2011 – 2012 school years. 
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 Based on visual examination of histograms, first grade MBSP-C winter data, first grade 

MBSP-C spring data, PSSA-M composite data, Numbers and Operations subtest data, and 

Algebraic Concepts subtest data appear to be normally distributed.  Visual inspections of 

histograms indicated negatively skewed distributions on the Measurement subtest, Geometry 

subtest, and Data Analysis and Probability subtest of the third grade PSSA-M.  A negatively 

skewed distribution is expected on a criterion referenced assessment such as the PSSA and does 

not significantly violate the assumption of normality to conduct MLR.  A negatively skewed 

distribution on a criterion referenced assessment indicates students have acquired the skills that 

are being taught (Brown, 1997; Osborne, 2013).  First grade MBSP-C fall data had a positively 

skewed distribution.  This may be due to a floor effect, given the limited computation instruction 

provided to first grade students in the beginning of the school year.   Skewness and kurtosis 

values were generated to further explore the normality of the distributions.  The acceptable or 

normal range for skewness values has been defined as -1.00 to 1.00 (Huck, 2014).  Although the 

distributions appeared atypical, skewness coefficients fell within the acceptable range for all 

variables with the exception of first grade MBSP-C fall data (skewness = 1.23), Measurement 

data (skewness = -1.21), Geometry data (skewness = -1.48), and Algebraic Concepts data 

(skewness = -1.08).  Kurtosis values ranged from -.58 to 2.51, all of which fell within the 

accepted range of -3.00 to 3.00 (Byrne, 2010; Huck, 2014).  It is determined that first grade data 

did not significantly violate the assumption of normality given PSSA is a criterion referenced 

assessment.  Please refer to Table 10 for sample size, mean, standard deviation, range, skewness, 

and kurtosis statistics.   

 First grade data were examined using boxplots to identify significant outliers.  Significant 

outliers were defined as data points which exceeded three times the interquartile range.  Two 
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data sets were identified as outliers and excluded from further analysis.  The boxplots of first 

grade data are available for review in Appendix D.   

Table 10 

Descriptive Statistics for First Grade MBSP-C and PSSA Data 
Variable N M SD Range Skewness Kurtosis 

MBSP-C Fall 500 3.67 3.39 0-22 1.23 2.05 
MBSP-C Winter 503 14.55 5.90 1-30  .59 .13 
MBSP-C Spring 510 17.58 6.52 2-30 .11 -.58 
PSSA-M Composite 274 1393.21 157.64 931-1859 .06 .461 
PSSA-M Numbers and 
Operations  

512 29.88 6.00 9-40 -.85 .95 

PSSA-M Measurement  512 8.14 2.01 0-10 -1.21 1.11 
PSSA-M Geometry  274 8.70 1.46 2-10 -1.47 2.51 
PSSA-M Algebraic Concepts 512 8.55 1.66 2-11 -1.08 1.40 
PSSA-M Data Analysis and 
Probability 

512 8.58 1.85 1-11 -.597 .41 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics. 
 
 Second grade descriptive statistics.  Please refer to Figures 12 through 20 for 

histograms of MBSP-C data in the fall, winter, and spring of second grade, in addition to the 

corresponding third grade PSSA-M Composite data and PSSA-M subtest data for a visual 

inspection of normality. 
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Figure 12. Histogram of second grade Monitoring Basic Skills Progress-Computation fall data. 

 
Figure 13. Histogram of second grade Monitoring Basic Skills Progress-Computation winter data. 
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Figure 14. Histogram of second grade Monitoring Basic Skills Progress-Computation spring data. 

 
Figure 15. Histogram of third grade 2012 and 2013 Pennsylvania System of School Assessment, Mathematics 
composite data from students in second grade during the 2010 – 2011 and 2011 – 2012 school years. 
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Figure 16. Histogram of third grade 2012, 2013, and 2014 Pennsylvania System of School Assessment, 
Mathematics Numbers and Operations data from students in second grade during the 2010 – 2011, 2011 – 2012, and 
2012 – 2013 school years. 

 
Figure 17.  Histogram of third grade 2012, 2013, and 2014 Pennsylvania System of School Assessment, 
Mathematics Measurement data from students in second grade during the 2010 – 2011, 2011 – 2012, and 2012 – 
2013 school years. 
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Figure 18.  Histogram of third grade 2012 and 2013 Pennsylvania System of School Assessment, Mathematics 
Geometry data from students in second grade during the 2010 – 2011 and 2011 – 2012 school years. 

 
Figure 19. Histogram of third grade 2012, 2013, and 2014 Pennsylvania System of School Assessment, 
Mathematics Algebraic Concepts data from students in second grade during the 2010 – 2011, 2011 – 2012, and 2012 
– 2013 school years. 
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Figure 20. Histogram of third grade 2012, 2013, and 2014 Pennsylvania System of School Assessment, 
Mathematics Data Analysis and Probability data from students in second grade during the 2010 – 2011, 2011 – 
2012, and 2012 – 2013 school years. 
 
 Data for second grade MBSP-C winter probe, second grade MBSP-C spring probe, 

PSSA-M Composite, and the Numbers and Operations subtest of the PSSA-M appear to be 

normally distributed based on visual inspection of histograms.  The histogram for second grade 

MBSP-C fall data indicated a positively skewed distribution.  The distribution of Measurement, 

Geometry, Algebraic Concepts, and Data Analysis and Probability data all appear negatively 

skewed based on a visual inspection of histograms.  This negatively skewed distribution is 

expected on a criterion referenced assessment such as the PSSA and does not violate the 

assumptions of MLR.  It indicates students acquired the skills that are being taught (Brown, 

1997; Osborne, 2013).  Skewness and kurtosis statistics were generated to further explore the 

normality of distribution.  Skewness values fell within the acceptable range (-1.00 to 1.00) for 

second grade MBSP-C in the winter and spring, PSSA-M composite data, Numbers and 
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Operations subtest data, and Data Analysis and Probability subtest data.  Negatively skewed 

distributions were confirmed by skewness values falling below -1.00 on the Measurement, 

Geometry, and Algebraic Concepts subtests of the third grade PSSA-M.  A skewness statistic of 

1.09 confirmed a positively skewed distribution of second grade MBSP-C fall data.  Kurtosis 

values fell within normal limits for all distributions, with the exception Geometry with a kurtosis 

value of 3.49.  It is determined second grade data did not significantly violate the assumption of 

normality given PSSA is a criterion referenced assessment.  Please refer to Table 11 for sample 

size, mean scores, standard deviation, range, skewness, and kurtosis statistics.   

 Second grade data were examined using boxplots to identify significant outliers.  

Significant outliers were defined as data points which exceed three times the interquartile range.  

Five data sets were identified as outliers and excluded from further analysis.  Boxplots of second 

grade data are provided for review in Appendix E. 

Table 11 

Descriptive Statistics for Second Grade MBSP-C and PSSA-M Data 
Variable N M SD Range Skewness Kurtosis 

MBSP-C Fall 797 8.61 5.30 0-35 1.09 1.79 
MBSP-C Winter 811 16.48 7.91 1-42 .53 .21 
MBSP-C Spring 821 20.38 8.94 0-41 .29 -.54 
PSSA-M Composite 570 1392.35 173.85 894-1859 .08 .35 
PSSA-M Numbers and 
Operations  

825 28.99 6.01 4-40 -.99 1.50 

PSSA-M Measurement  825 8.00 2.02 0-10 -1.08 .77 
PSSA-M Geometry  570 8.72 1.24 2-10 -1.55 3.49 
PSSA-M Algebraic Concepts 825 8.52 1.71 1-11 -1.28 1.93 
PSSA-M Data Analysis and 
Probability 

825 8.67 1.77 1-11 -.92 1.10 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics. 
 
 Third grade descriptive statistics.  Please refer to Figures 21 through 29 for histograms 

of MBSP-C data in the fall, winter, and spring of third grade, in addition to the corresponding 
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third grade PSSA-M Composite data and PSSA-M subtest data for a visual inspection of 

normality. 

 
Figure 21. Histogram of third grade Monitoring Basic Skills Progress-Computation fall data.  
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Figure 22.  Histogram of third grade Monitoring Basic Skills Progress-Computation winter data.  
 

 
Figure 23. Histogram of third grade Monitoring Basic Skills Progress-Computation spring data. 
 
 



 

159 

 
Figure 24. Histogram of third grade 2011, 2012, and 2013 Pennsylvania System of School Assessment, 
Mathematics composite data from students in third grade during the 2010 – 2011, 2011 – 2012, and 2012 – 2013 
school years. 

 
Figure 25. Histogram of third grade 2011, 2012, 2013, and 2014 Pennsylvania System of School Assessment, 
Mathematics Numbers and Operations data from students in third grade during the 2010 – 2011, 2011 – 2012, 2012 
– 2013, and 2013 – 2014 school years. 
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Figure 26. Histogram of third grade 2011, 2012, 2013, and 2014 Pennsylvania System of School Assessment, 
Mathematics Measurement data from students in third grade during the 2010 – 2011, 2011 – 2012, 2012 – 2013, and 
2013 – 2014 school years. 

 
Figure 27. Histogram of third grade 2011, 2012, and 2013 Pennsylvania System of School Assessment, 
Mathematics Geometry data from students in third grade during the 2010 – 2011, 2011 – 2012, and 2012 – 2013 
school years. 
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Figure 28. Histogram of third grade 2011, 2012, 2013, and 2014 Pennsylvania System of School Assessment, 
Mathematics Algebraic Concepts data from students who were in third grade during the 2010 – 2011, 2011 – 2012, 
2012 – 2013, and 2013 –  2014 school years. 

 
Figure 29. Histogram of third grade 2011, 2012, 2013, and 2014 Pennsylvania System of School Assessment, 
Mathematics Data Analysis and Probability data from students in third grade during the 2010 – 2011, 2011 – 2012, 
2012 – 2013, and 2013 – 2014 school years. 
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 A visual examination of third grade MBSP-C and PSSA-M data histograms indicated 

normal distribution of third grade MBSP-C in the fall, winter, spring, and PSSA-M composite 

data.  Skewness and kurtosis values fell within the acceptable range, confirming normal 

distribution of MBSP-C and PSSA-M data.  Histograms for the PSSA-M subtests indicated a 

negatively skewed distribution.  This was confirmed by skewness statistics that fell outside of the 

acceptable range of -1.00 to 1.00.  Kurtosis values for all variables fell within the acceptable 

range of -3.00 to 3.00 with the exception of the Geometry subtest, which was leptokurtic 

(kurtosis value of 4.23).  Third grade data met the assumption of normality.  Please refer to Table 

12 for sample size, mean scores, standard deviation, range, skewness, and kurtosis statistics.   

 Third grade data were examined using boxplots to identify significant outliers.  

Significant outliers were defined as data points which fell three times above the interquartile 

range.  Ten data sets from third grade data sets were identified as outliers and excluded from 

further analysis.  Boxplots of third grade data are provided for review in Appendix F. 

Table 12 
 
Descriptive Statistics for Third Grade MBSP-C and PSSA-M Data 

Variable N M SD Range Skewness Kurtosis 
MBSP-C Fall 1170 9.91 6.55 0-38 .98 1.38 
MBSP-C Winter 1197 21.38 8.14 2-44 .33 -.13 
MBSP-C Spring 1211 30.92 9.18 2-45 -.34 -.54 
PSSA-M 937 1395.6 168.65 872-1859 .03 .50 
Numbers and Operations  1221 28.88 5.67 4-40 -1.16 2.11 
Measurement  1221 8.20 2.03 0-11 -1.06 .86 
Geometry  937 8.90 1.24 2-10 -1.71 4.23 
Algebraic Concepts 1221 8.16 1.85 1-11 -1.10 1.25 
Data Analysis and 
Probability 

1221 8.60 1.65 1-11 -1.17 2.38 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics. 
 
 It is important to note, negatively skewed data on a criterion-referenced assessment, such 

as the PSSA, are typical and do not violate the assumptions of MLR (Brown, 1997; Osborne, 
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2013).  Negatively skewed distributions, on criterion referenced assessments, indicate a majority 

of students were able to acquire the skills being assessed and is desired over normal or positively 

skewed distributions.  The positively skewed distribution of MBSP-C fall data in first and second 

grades may reflect global deficits of skills students are expected to learn throughout that grade 

level and can be explained by a lack of an opportunity to learn or a floor effect.  This may be 

magnified in the first grade MBSP-C fall data due to the novelty of a fluency-based mathematics 

assessments for first grade students at the beginning of the school year.   

Independence of Observations 

 Durbin-Watson statistics were generated in order to check for independence of 

observations.  Durbin-Watson values range from 0 to 4 and a value of 2 indicates no 

autocorrelation.  Values of 1 to 3 are considered acceptable and imply independence of 

observation (Field, 2013).  Durbin-Watson values for each MLR analysis at each grade level fell 

within the acceptable range.  Therefore, it can be concluded that residuals are independent of 

each other and the assumption for MLR is met.  Please refer to Table 13 for a summary of 

Durbin-Watson values.   

Table 13 
 
Durbin-Watson Values From Multiple Linear Regression of Dependent Variables  
 First Grade Second Grade Third Grade 
PSSA-M Composite 2.26 2.09 2.02 
Numbers and Operations 1.89 1.78 1.86 
Measurement  2.06 1.97 1.82 
Geometry  2.18 1.79 1.78 
Algebraic Concepts  2.18 2.03 1.85 
Data Analysis and Probability  1.34 1.33 1.43 

Note. PSSA-M = Pennsylvania System of School Assessment, Mathematics. 
 
Linear Relationships 

 In order to properly analyze data with MLR, there must be a linear relationship between 

the dependent variable (e.g., PSSA) and each independent variable and the dependent variable 
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and the independent variables collectively.  Scatterplots were generated in order to visually 

inspect whether or not a linear relationship existed between the dependent and independent 

variables.  A visual examination of the scatterplots indicate positive linear relationships between 

the dependent and independent variables.  Therefore, the assumption of linearity is met for the 

purpose of MLR.   

Homoscedasticity 

 Homoscedasticity indicates an equal variance of the dependent variable for each level of 

an independent variable.  Homoscedasticity is determined by a visual inspection of scatterplots 

of the standardized residuals and standardized predicted values.  A lack of patterns on the 

scatterplot indicates homoscedasticity (Aldrich & Cunningham, 2016).   

 First grade homoscedasticity figures.  A visual inspection of first grade standardized 

residuals and standardized predicted values scatterplots indicates the assumption of 

homoscedasticity was met for the PSSA-M Composite variable and PSSA-M Numbers and 

Operations dependent variable.  Please refer to Figures 30 and 31.  Scatterplots of PSSA-M 

Measurement, PSSA-M Geometry, PSSA-M Algebraic Concepts, and PSSA-M Data Analysis 

and Probability demonstrate some patterning which indicates heteroscedasticity.  Please refer to 

Figures 32 through 35.  Therefore, the assumption of homoscedasticity is not met for these 

dependent variables.  Lack of homoscedasticity is not a gross violation of multi-linear regression, 

but does weaken the regression model (Field, 2013; Statistics Solutions, 2013).   
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Figure 30. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Composite for first grade cohort. 
 

 
Figure 31. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Numbers and Operations subtest for first grade cohort. 
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Figure 32. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Measurement subtest for first grade cohort. 

 
Figure 33. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Geometry subtest for first grade cohort. 
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Figure 34. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Algebraic Concepts subtest for first grade cohort. 

 
Figure 35. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Data Analysis and Probability subtest for first grade 
cohort. 
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 Second grade homoscedasticity.  The homoscedasticity of the second grade dependent 

variables was investigated by a visual examination of a scatterplot of the standardized regression 

residuals and standardized predicted values.  Please refer to Figures 36 through 41.  A visual 

inspection of these scatterplots indicates the assumption of homoscedasticity was met for PSSA-

M Composite and PSSA-M Numbers and Operations.  Homoscedasticity was not observed for 

the Measurement, Geometry, Algebraic Concepts, and Data Analysis and Probability PSSA-M 

subtests.  As previously noted, a violation of the homoscedasticity assumption weakens the 

regression model but is not a significant violation (Statistics Solutions, 2013). 

 
Figure 36. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Composite for the second grade cohort. 
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Figure 37. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Numbers and Operations subtest for the second grade 
cohort. 

 
Figure 38.  Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Measurement subtest for the second grade cohort. 
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Figure 39. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Geometry subtest for the second grade cohort. 

 
Figure 40. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Algebraic Concepts subtest for the second grade cohort. 
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Figure 41. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Data Analysis and Probability subtest for the second 
grade cohort. 
 
 Third grade homoscedasticity.  The homoscedasticity of the third grade dependent 

variables was investigated by a visual examination of a scatterplot of the standardized regression 

residuals and standardized predicted values.  Similar to first and second grade data, the 

assumption of homoscedasticity was met for the PSSA-M Composite and PSSA-M Numbers and 

Operations dependent variables, but violated for the remaining PSSA-M subtests.  Please refer to 

Figures 42 through 47.  A lack of homoscedasticity weakens the regression model but is not a 

significant violation (Statistics Solutions, 2013). 
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Figure 42. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Composite for the third grade cohort. 

 
Figure 43. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Numbers and Operations subtest for the third grade 
cohort. 
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Figure 44. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Measurement subtest for the third grade cohort. 

 
Figure 45. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Geometry subtest for the third grade cohort. 
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Figure 46. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Algebraic subtest for the third grade cohort. 
 

 
Figure 47. Scatterplot of regression standardized predicted value and regression standardized residual of 
Pennsylvania System of School Assessment, Mathematics Data Analysis and Probability subtest for the third grade 
cohort. 
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Multicollinearity 

 Multicollinearity occurs when two or more independent variables are highly correlated 

with each other.  Multicollinearity is problematic when conducting MLR because it is difficult to 

determine which independent variable is contributing to the variance in the dependent variable.  

Therefore, data should not demonstrate multicollinearity when conducting a MLR.  

Multicollinearity is determined by visually inspecting histograms of standardized residuals and 

Normal P-P plots.  Normally distributed residuals will fall along the diagonal line of the plot.  

Lines that do not trend along the diagonal indicate a deviation from normality (Fields, 2013).  

Multicollinearity is not present when the residuals are normally distributed. 

 First grade multicollinearity statistics.  Histograms and Normal P-P plots of the 

standardized residuals were generated and inspected to determine whether or not 

multicollinearity was present with first grade data.  Multicollinearity was not observed with 

PSSA-M Composite data and on all PSSA-M subtests, with the exception of Measurement and 

Geometry, as evidenced by normal distributions on both histograms and Normal P-P plots.  A 

slight left skew was observed on the Normal P-P plots for the Geometry subtest and 

Measurement subtest.  However, the left skewed was not significant enough to indicate a 

violation of the multicollinearity assumption.  It is not necessary for data points to be perfectly 

aligned with the diagonal as MLR is robust to deviations from normality (Laerd Statistics, 2015).  

Please refer to Figures 48 through 59. Therefore, it is concluded the multicollinearity assumption 

is met.   
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Figure 48. Histogram of Pennsylvania System of School Assessment, Mathematics Composite standardized 
residuals for the first grade cohort. 

 

 
Figure 49. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Composite standardized 
residuals for the first grade cohort. 
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Figure 50. Histogram of Pennsylvania System of School Assessment, Mathematics Numbers and Operations 
standardized residuals for the first grade cohort. 
 

 
Figure 51. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Numbers and Operations 
standardized residuals for the first grade cohort. 
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Figure 52. Histogram of Pennsylvania System of School Assessment, Mathematics Measurement standardized 
residuals for the first grade cohort. 
 

 
Figure 53. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Measurement standardized 
residuals for the first grade cohort. 
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Figure 54. Histogram of Pennsylvania System of School Assessment, Mathematics Geometry standardized residuals 
for the first grade cohort. 

 

 
Figure 55. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Geometry standardized 
residuals for the first grade cohort. 
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Figure 56. Histogram of Pennsylvania System of School Assessment, Mathematics Algebraic Concepts standardized 
residuals for the first grade cohort. 

 

 
Figure 57. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Algebraic Concepts 
standardized residuals for the first grade cohort. 
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Figure 58. Histogram of Pennsylvania System of School Assessment, Mathematics Data Analysis and Probability 
standardized residuals for the first grade cohort. 
 

 
Figure 59. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Data Analysis and 
Probability standardized residuals for the first grade cohort. 
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 Second grade multicollinearity statistics.  Histograms and Normal P-P plots of the 

standardized residuals were generated and visually inspected to evaluate whether second grade 

data were multicollinear.  Multicollinearity was not observed with PSSA-M Composite data and 

on all PSSA-M subtests, as evidenced by normal distributions on both histograms and Normal P-

P plots.  A slight left skew was observed on the Normal P-P plots for the Geometry subtest, 

Measurement subtest, and Algebraic Concepts subtest.  However, the left skewed was not 

significant enough to indicate a violation of the multicollinearity assumption.  It is not necessary 

for data points to be perfectly aligned with the diagonal as MLR is robust to deviations from 

normality (Laerd Statistics, 2015).  Therefore, the multicollinearity assumption was met for 

second grade data.  Please refer to Figures 60 through 71.   

 
Figure 60. Histogram of Pennsylvania System of School Assessment, Mathematics Composite standardized 
residuals for the second grade cohort. 
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Figure 61. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Composite standardized 
residuals for the second grade cohort. 
 

 
Figure 62. Histogram of Pennsylvania System of School Assessment, Mathematics Numbers and Operations 
standardized residuals for the second grade cohort. 
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Figure 63. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Numbers and Operations 
standardized residuals for the second grade cohort. 
 

 
Figure 64. Histogram of Pennsylvania System of School Assessment, Mathematics Measurement standardized 
residuals for the second grade cohort. 
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Figure 65. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Measurement standardized 
residuals for the second grade cohort. 
 

 
Figure 66. Histogram of Pennsylvania System of School Assessment, Mathematics Geometry standardized residuals 
for the second grade cohort. 
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Figure 67. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Geometry standardized 
residuals for the second grade cohort. 

 

 
Figure 68. Histogram of Pennsylvania System of School Assessment, Mathematics Algebraic Concepts standardized 
residuals for the second grade cohort. 
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Figure 69. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Algebraic Concepts 
standardized residuals for the second grade cohort. 

 
Figure 70. Histogram of Pennsylvania System of School Assessment, Mathematics Data Analysis and Probability 
standardized residuals for the second grade cohort. 
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Figure 71. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Data Analysis and 
Probability standardized residuals for the second grade cohort. 
 
 Third grade multicollinearity statistics.  Histograms and Normal P-P plots of the 

standardized residuals were generated and visually inspected to evaluate whether third grade data 

were multicollinear.  Multicollinearity was not observed with PSSA-M Composite data and on 

all PSSA-M subtests, as evidenced by normal distributions on both histograms and Normal P-P 

plots.  A slight left skew was observed on the Normal P-P plots for the Geometry subtest, 

Measurement subtest, and Algebraic Concepts subtest.  However, the left skewed was not 

significant enough to indicate multicollinearity.  It is not necessary for data points to be perfectly 

aligned with the diagonal as MLR is robust to deviations from normality (Laerd Statistics, 2015).  

Please refer to Figures 72 through 83.  Therefore, the multicollinearity assumption was met for 

third grade data.   
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Figure 72. Histogram of Pennsylvania System of School Assessment, Mathematics Composite standardized 
residuals for the third grade cohort. 

 
Figure 73. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Composite standardized 
residuals for the third grade cohort. 
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Figure 74. Histogram of Pennsylvania System of School Assessment, Mathematics Numbers and Operations 
standardized residuals for the third grade cohort. 
 

 
Figure 75. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Numbers and Operations 
standardized residuals for the third grade cohort. 
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Figure 76. Histogram of Pennsylvania System of School Assessment, Mathematics Measurement standardized 
residuals for the third grade cohort. 

 
Figure 77. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Measurement standardized 
residuals for the third grade cohort. 
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Figure 78. Histogram of Pennsylvania System of School Assessment, Mathematics Geometry standardized residuals 
for the third grade cohort. 

 

 
Figure 79. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Geometry standardized 
residuals for the third grade cohort. 
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Figure 80. Histogram of Pennsylvania System of School Assessment, Mathematics Algebraic Concepts standardized 
residuals for the third grade cohort. 

 

 
Figure 81. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Algebraic Concepts 
standardized residuals for the third grade cohort. 
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Figure 82. Histogram of Pennsylvania System of School Assessment, Mathematics Data Analysis and Probability 
standardized residuals for the third grade cohort. 

 
Figure 83. Normal P-P plot of Pennsylvania System of School Assessment, Mathematics Data Analysis and 
Probability standardized residuals for the third grade cohort. 
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Multiple Linear Regression 

 After reviewing the assumptions required for MLR, it was determined the data 

demonstrated the properties necessary for this statistical analysis.  MLR is a statistical procedure 

that can be used to determine how multiple independent variables contribute to variance in a 

dependent variable (Aldrich & Cunningham, 2016).  While there are different forms of MLR, the 

present study utilized stepwise MLR to analyze the relationship between MBSP-C, sex, and 

resource availability and PSSA-M data in order to determine which of the independent variables 

accounted for a significant amount of variance in the dependent variable.   

In a stepwise approach, independent variables are entered into the regression equation 

based on their strength of correlation with the dependent variable.  This means that if an 

independent variable does not have a significant contribution to the dependent variable, it is 

excluded from the regression equation.  Due to questions regarding whether or not sex and 

resource availability had any impact on PSSA-M performance, it was decided a stepwise 

regression analysis would be the most appropriate analysis.  This approach was preferred over 

other regression analysis methods which forced the inclusion of all the independent variables.  

“A stepwise regression analysis enters predictor variables into the equation based on their ability 

to predict unique variance in the outcome variable – variance that is not already predicted by 

predictor variables that are already in the equation.” (Leary, 2001, p. 166).   

In this study, the independent variables are sex, resource availability (measured by free 

and reduced lunch status), and MBSP-C probes in the fall, winter, and spring of first, second, and 

third grades.  Dependent variables include PSSA-M Composite scores and five PSSA-M subtests 

(Numbers and Operations, Measurement, Geometry, Algebraic Concepts, and Data Analysis and 

Probability).  Stepwise MLR will generate multiple regression models, up to five if all of the 
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independent variables have a significant contribution.  Each model generated from stepwise 

MLR is compared.  A determination is made whether or not the full regression model is a good 

fit for the data and regression coefficients are reported.  The full or final regression model is used 

to determine if the model is a good fit for the data; in other words, whether or not the 

independent variables are able to predict the criterion measures in a statistically significant way.  

Regression coefficients are also reported for the final regression model.  The unstandardized 

regression coefficient, B, represents the strength of the relationship between the predictor and the 

outcome of the in same unit of measurement as the predictor.  “It is the change in the outcome 

associated with a unit change in the predictor” (Fields, 2013, p. 870).  The standardized 

regression coefficient, β, indicates the strength of the relationship between a predictor and the 

outcome in a standardized manner.  This standardization allows for comparisons between β 

values (Fields, 2013; Laerd Statistics, 2015).   

In addition to B and β values, MLR generates the multiple correlation coefficient (R), the 

coefficient of determination (R²) and the adjusted coefficient of determination (adjusted R²).  R 

depicts the correlation between the dependent and all independent variables.  R² represents the 

how much of the variance in the dependent variable can be explained by all of the independent 

variables (Fields, 2013; Laerd Statistics, 2015).  The adjusted R² is defined as, 

 A measure of the loss of predictive power or shrinkage in regression.  The adjusted R² 

 tells us how much variance in the outcome would be accounted for if the model had been 

 derived from the population from which the sample was taken. (Fields, 2013, pp. 870) 

The R, R², and adjusted R² provide additional information and are included in the interpretation 

of the MLR results below.  R values and adjusted R² values are highlighted more frequently than 

the R².  This is because the adjusted R² is thought to represent a more accurate value of variance 
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since it corrects positive bias that may occur from the sample population.  The adjusted R² 

accounts for any sampling bias that may have inflated R² (Laerd Statistics, 2015).  The R² and 

adjusted R² are also referred to as the effect size.  R² and adjusted R² values equal to or greater 

than 0.26 are considered substantial, less than 0.26 to 0.13 are considered moderate, and less than 

0.13 to 0.02 are categorized as weak effect sizes (Cohen, 1988). 

First Grade Multiple Linear Regression  

 First grade data from all the independent variables were entered into a stepwise MLR for 

each of the PSSA-M dependent variables.  Table 14 provides a summary of the regression 

models with corresponding, R, R², and adjusted R² values, which are reviewed in subsequent 

sections.   
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Table 14 

Summary of First Grade Stepwise Regression Models 
 
Dependent Variable 

 
Model and Predictors Variables 

 
R 

 
R² 

Adjusted 
R² 

PSSA-M Composite Model 1: MBSP-C spring  .513 .264 .261 
 Model 2: MBSP-C spring, MBSP-C fall .559 .312 .307 
 Model 3: MBSP-C spring, MBSP-C    

  fall, MBSP-C winter 
.575 .331 .323 

 Model 4: MBSP-C spring, MBSP-C    
  fall, MBSP-C winter, sex 

.586 .343 .333 

     
Numbers and Operations Model 1: MBSP-C spring .490 .240 .239 
 Model 2: MBSP-C spring, MBSP-C  

  Winter 
.501 .251 .248 

     
 Measurement Model 1: MBSP-C spring .397 .158 .156 
 Model 2: MBSP-C spring, MBSP-C fall .409 .167 .164 
     
Geometry Model 1: MBSP-C winter .409 .167 .164 
 Model 2: MBSP-C winter, MBSP-C  

  Spring 
.430 .185 .178 

 Model 3: MBSP-C winter, MBSP-C   
  spring, MBSP-C fall 

.447 .200 .191 

     
Algebraic Concepts Model 1: MBSP-C spring .400 .160 .158 
 Model 2: MBSP-C spring, MBSP-C    

  Winter 
.427 .182 .179 

 Model 3: MBSP-C spring, MBSP-C  
  winter, MBSP-C fall 

.436 .190 .185 

     
Data Analysis and 
Probability  

Model 1: MBSP-C spring .320 .103 .101 
Model 2: MBSP-C spring, MBSP-C fall .336 .113 .109 

 Model 3: MBSP-C spring, MBSP-C  
  fall, MBSP-C winter 

.350 .122 .117 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics. PSSA Composite N = 274, Numbers and Operations N = 499, Measurement N = 496, 
Geometry N = 274, Algebraic Concepts N = 493, Data Analysis and Probability N = 493.  
 
 Multiple linear regression of PSSA-M Composite with first grade independent 

variables.  A stepwise multiple linear regression was performed to predict performance on the 

third grade PSSA-M Composite from MBSP-C probes administered in the fall, winter, and 

spring of first grade, sex, and resource availability.  The analysis generated four regression 
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models.  First grade MBSP-C data in the fall, winter, and spring and sex statistically significantly 

predicted performance on the third grade PSSA-M Composite, F (4, 256) = 33.424, p < .0005. 

The model is a good fit for the data.  The full regression model explained 33% of the variance on 

PSSA-M Composite scores. 

 The R value for the first regression model which included MBSP-C in the spring of first 

grade was .513.  The second regression model for PSSA-M Composite included MBSP-C data 

for the spring and fall of first grade generated an R value of .559.  The third regression model 

added MBSP-C in the winter of first grade and increased R to .575.  The fourth regression model 

included sex with R = .586.  These R values indicate a strong positive predictive relationship 

between the first independent variables included in the regression model and PSSA-M composite 

scores in third grade (Cohen, 1977).   

 Based on the first model, first grade MBSP-C spring data accounts for the largest 

variance, 26% of overall PSSA-M performance which was administered in the spring of third 

grade.  The second regression model included first grade MBSP-C fall which increased the 

variance accounted for by the model to 31%.  The adjusted R² increased to 32% with the addition 

of MBSP-C in the winter of first grade.  The full regression model which included MBSP-C in 

the fall, winter, and spring and sex generated a R² value of .343 and adjusted R² value of .333 or 

33%.  An effect size of 33% is considered substantial (Cohen, 1988). 

 The increase in variance with the addition of MBSP-C in the winter and sex of student is 

statistically significant (p = .007; p = .032).  MBSP-C winter data are easily available in systems 

where universal screenings are administered three times a year.  Therefore, while the percentage 

of additional variance explained appears small, it is worth including in the regression model.  

However, educational systems may choose to exclude student sex data without significantly 
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impacting the predictive power of the regression model.  Resource availability in first grade did 

not significantly contribute to the overall variance of PSSA-M Composite in the spring of third 

grade.    

 Regression coefficients and standard errors for the full model, Model 4, are summarized 

in Table 15.  The full model is reported because it accounts for the most variance and includes 

the independent variables that have a statistically significant impact on the dependent variable.   

Table 15 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Composite From First Grade 
MBSP-C Fall, Winter, and Spring Data and Sex of Student. 

Variable B SE B β 
Constant 1200.723** 32.088  
MBSP-C spring 7.453 1.659 .316** 
MBSP-C fall 8.296 2.514 .188** 
MBSP-C winter 5.439 1.987 .202* 
Sex -33.610 15.594 -.110* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient.  N = 274. * p < .05, ** p 
<.001 
 
 The standardized regression coefficient (β) represents the impact an independent variable 

has on the dependent variable.  Since the β is standardized, comparisons can be made between β 

values.  This comparison is not possible with the unstandardized regression coefficient, B.  All of 

the β values from the independent variables included in the full regression model are statistically 

significant.  However, a comparison of the β values indicate first grade MBSP-C spring data has 

the most significant impact on third grade PSSA-M Composite scores.  First grade MBSP-C fall 

and winter scores have a similar impact on third grade PSSA-M Composite scores.  The 

relationship between the independent variables and dependent variable is positive.  This means 

that in a prediction model, an increase in MBSP-C scores results in an increase in PSSA-M 

Composite scores.  The β value of sex, which is a dichotomous variable, is interpreted to mean 

females in the first grade cohort demonstrated higher scores on the third grade PSSA-M 
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composite.  Based on first grade data, PSSA-M Composite scores increased 7.453 points for each 

MBSP-C spring digit correct, 8.296 points for each MBSP-C fall digit correct, and 5.439 points 

for each MBSP-C spring digit correct.  Females performed 33.610 points higher than males.   

 Multiple linear regression of PSSA-M Numbers and Operations subtest with first 

grade independent variables.   A stepwise multiple linear regression was performed to predict 

performance on the third grade PSSA-M Numbers and Operations subtest from MBSP-C probes 

administered in the fall, winter, and spring of first grade, sex, and resource availability.  The 

stepwise regression generated two regression models, both good fits to the data.  MBSP-C in the 

spring and winter of first grade were found to statistically significantly predict performance on 

the third grade PSSA-M Numbers and Operations subtest, F (2, 490) = 82.184, p < .0005.  The 

R² for the full regression model was 25% with an adjusted R² of 25%, which indicates a moderate 

effect size (Cohen, 1988). 

 The outcome of the stepwise regression indicated MBSP-C in the spring of first grade 

accounted for the most amount of variance on third grade PSSA-M Numbers and Operations 

performance (R = .490;  adjusted R² = .239).  An R value of .490 indicated a moderately strong 

predictive relationship (Cohen, 1977).  An effect size of 24% is considered moderate (Cohen, 

1988).  The second regression model included the MBSP-C in the winter of first grade which 

resulted in a statistically significant (p = .008) increase in total variance to 25% (R = .501; 

adjusted R² = .251).  This is interpreted to mean 25% of variance on third grade PSSA-M 

Numbers and Operations subtest can be explained by MBSP-C scores administered in the winter 

and spring of first grade.  The amount of variance explained by the regression model is 

considered moderate.  The inclusion of MBSP-C winter in the regression model increased the 

strength of the relationship to over .50 which indicates a strong relationship (Cohen, 1977).  
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Resource availability, sex, and MBSP-C in the fall of first grade did not significantly predict 

performance on third grade PSSA-M Numbers and Operations subtest or significantly contribute 

to the variance accounted for by the model.    

 Regression coefficients and standard errors for the full model, Model 2, are summarized 

in Table 16.  The full model is reported because it accounts for the most variance and includes 

the independent variables which have a statistically significant impact on the dependent variable.   

Table 16 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Numbers and Operations subtest 
from First Grade MBSP-C Winter and Spring Data. 

Variable B SE B β 
Constant 21.714** .691  
MBSP-C spring .354 .049 .391** 
MBSP-C winter .142 .054 .143* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 510. * p < .05, ** p 
<.001 
 
 All of the β values from the independent variables included in the full regression model 

are statistically significant.  A comparison of β values indicate first grade MBSP-C spring data 

has the most significant impact on third grade PSSA-M Numbers and Operations scores (β = 

.391).  First grade MBSP-C winter scores have a lower, but still significant impact on third grade 

PSSA-M Numbers and Operations scores.  In the prediction model, the impact of MBSP-C in the 

spring is 2.73 times stronger than MBSP-C in the winter.  The relationship between the 

independent variables and dependent variable is positive.  This means an increase in MBSP-C 

scores represents a score increase on the PSSA-M Numbers and Operations subtest.  Based on 

first grade data, PSSA-M Numbers and Operations subtest scores increased .354 points for each 

MBSP-C spring digit correct and .142 points for each MBSP-C winter digit correct.   

 Multiple linear regression of PSSA-M Measurement subtest with first grade 

independent variables.   A stepwise multiple linear regression was performed to predict 



 

203 

performance on the third grade PSSA-M Measurement subtest from MBSP-C probes 

administered in the fall, winter, and spring of first grade, sex, and resource availability.  The 

stepwise regression created two models.  MBSP-C in the fall and spring of first grade were found 

to statistically significantly predict performance on the third grade PSSA-M Measurement 

subtest, F (2, 490) = 49.124, p < .0005.  The R² for the full regression model was 17% with an 

adjusted R² of 16%.  This indicates a moderate effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the spring of first grade 

accounted for the most amount of variance on third grade PSSA-M Measurement performance 

with a relationship that is moderate in magnitude (R = .397; adjusted R² = .156).  The second 

regression model included the MBSP-C in the fall of first grade which increased total variance 

only slightly, remaining at 16% (R = .409; adjusted R² = .164).  While the increase in variance 

was statistically significant (p = .021), it is not so significant that systems should delay analysis 

until spring data are available.  Resource availability, sex, and MBSP-C in the winter of first 

grade did not significantly predict performance on third grade PSSA-M Measurement subtest.  

 Regression coefficients and standard errors for the full regression model are summarized 

in Table 17.  The full model is reported because it accounts for the most variance and includes 

the independent variables which have a statistically significant impact on the dependent variable.   

Table 17 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Measurement Subtest From First 
Grade MBSP-C Fall and Spring Data. 

Variable B SE B β 
Constant 5.975** .242  
MBSP-C spring .111 .014 .358** 
MBSP-C fall .063 .027 .104* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 510. * p < .05, ** p 
<.001 
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 All of the β values from the independent variables included in the full regression model 

are statistically significant.  A comparison of β values indicate first grade MBSP-C spring scores 

have the most significant impact on third grade PSSA-M Measurement scores.  First grade 

MBSP-C fall scores have a lower, but still statistically significant impact on third grade PSSA-M 

Measurement scores.  The relationship between the independent variables and dependent 

variables are positive.  This positive relationship suggests when looking at the prediction model 

an increase in MBSP-C scores would result in increased PSSA-M Measurement scores.  Based 

on first grade data, PSSA-M Measurement subtest scores increased .111 points for each MBSP-C 

spring digit correct and .063 points for each MBSP-C fall digit correct. 

 Multiple linear regression of PSSA-M Geometry subtest with first grade 

independent variables.   A stepwise multiple linear regression was performed to predict 

performance on the third grade PSSA-M Geometry subtest from MBSP-C probes administered in 

the fall, winter, and spring of first grade, sex, and resource availability.  The stepwise regression 

created three models, all with a good fit to the data.  In the full regression model, MBSP-C in the 

fall, winter, and spring of first grade were found to statistically significantly predict performance 

on the third grade PSSA-M Geometry subtest, F (3, 257) = 21.431, p < .0005.  The R² for the full 

regression model was 20% with an adjusted R² of 19%. This indicates a moderate effect size 

(Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the winter of first grade 

accounted for the most amount of variance on third grade PSSA-M Geometry performance with 

a moderately strong relationship (R = .409; adjusted R² = .164).  The second regression model 

included the MBSP-C in the spring of first grade which resulted in a statistically significant (p = 

.019) increase in variance of the PSSA-M Geometry subtest, accounting for 18% of the variance 
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of MBSP-C (R = .430; adjusted R² = .185).  The third regression model included fall of first 

grade MBSP-C data (R = .447; adjusted R² = .191).  The increase in variance for this model was 

statistically significant (p = .027).  The magnitude of the relationship remained moderate for the 

full regression model.  Resource availability and sex in first grade did not significantly contribute 

to the prediction of third grade PSSA-M Geometry.  Regression coefficients and standard errors 

for the full regression model, Model 3, are summarized in Table 18.   

Table 18 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Geometry Subtest From First 
Grade MBSP-C Fall, Winter, and Spring Data. 

Variable B SE B β 
Constant 7.086** .233  
MBSP-C winter .054 .020 .225* 
MBSP-C spring .037 .016 .173* 
MBSP-C fall  .055 .025 .140* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient.  N = 274. * p < .05, ** p 
<.001 
 
 All of the β values from the independent variables included in the full regression model 

are statistically significant.  A comparison of the β values indicate first grade MBSP-C winter 

scores have the most significant impact on third grade PSSA-M Geometry scores.  First grade 

MBSP-C spring and fall scores have a lower, but still statistically significant impact on third 

grade PSSA-M Geometry scores.  The relationship between the independent variables and 

dependent variable is positive.  This means that in a prediction model, an increase in MBSP-C 

scores results in score increases on the PSSA-M Geometry subtest.  Based on first grade data, 

PSSA-M Geometry subtest scores increased .054 points for each MBSP-C winter digit correct, 

.037 points for each MBSP-C spring digit correct, and .055 points for each MBSP-C fall digit 

correct.  
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 Multiple linear regression of PSSA-M Algebraic Concepts subtest with first grade 

independent variables.   A stepwise multiple linear regression was performed to predict 

performance on the third grade PSSA-M Algebraic Concepts subtest from MBSP-C probes 

administered in the fall, winter, and spring of first grade, sex, and resource availability.  The 

stepwise regression created three models.  MBSP-C in the fall, winter, and spring of first grade 

were found to statistically significantly predict performance on the third grade PSSA-M 

Algebraic Concepts subtest, F (3, 489) = 38.297, p < .0005.  The R² for the full regression model 

was 19% with an adjusted R² of 19%.  This indicates a moderate effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the spring of first grade 

accounted for the most amount of variance on third grade PSSA-M Algebraic Concepts 

performance (R = .400; adjusted R² = .158).  The second regression model included the MBSP-C 

in the winter of first grade which increased total variance of PSSA-M Algebraic Concepts that 

can be accounted for by MBSP-C in the winter and spring of first grade to 18% (R = .427; 

adjusted R² = .179).  The increase in variance accounted for with the addition of MBSP-C winter 

data into the regression model is statistically significant (p < .0005). The third regression model 

added first grade MBSP-C fall data (R = .436; adjusted R² = .190).  The increase in total variance 

accounted for with the addition of MBSP-C fall data remained statistically significant, (p = .027).  

The R values indicate a relationship that is significant but moderate in magnitude.  Resource 

availability and sex in first grade did not significantly contribute to the prediction of third grade 

PSSA-M Algebraic Concepts performance.  Regression coefficients and standard errors for the 

full regression model are summarized in Table 19. 
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Table 19 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Algebraic Concepts Subtest From 
First Grade MBSP-C Fall, Winter, and Spring Data. 

Variable B SE B β 
Constant 6.668** .199  
MBSP-C spring .060 .014 .242** 
MBSP-C winter .047 .016 .173* 
MBSP-C fall .050 .022 .101* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient.  N = 510. * p < .05, ** p 
<.001 
 
 All of the β values from the independent variables included in the full regression model 

are statistically significant.  A comparison of β values indicate first grade MBSP-C spring data 

have the most significant impact on third grade PSSA-M Algebraic Concepts scores.  First grade 

MBSP-C winter scores and MBSP-C fall scores have a lower, but still significant impact on third 

grade PSSA-M Algebraic Concepts outcomes.  The relationship between the independent 

variables and dependent variables is positive, which means an increase in MBSP-C results in a 

score increase on the PSSA-M Algebraic Concepts subtest.  Based on first grade data, PSSA-M 

Algebraic Concepts subtest scores increased .060 points for each MBSP-C spring digit correct, 

.047 points for each MBSP-C winter digit correct, and .050 points for each MBSP-C fall digit 

correct. 

 Multiple linear regression of PSSA-M Data Analysis and Probability subtest with 

first grade independent variables.   A stepwise multiple linear regression was performed to 

predict performance on the third grade PSSA-M Data Analysis and Probability subtest from 

MBSP-C probes administered in the fall, winter, and spring of first grade, sex, and resource 

availability.  The stepwise regression created three models.  MBSP-C in the fall, winter, and 

spring of first grade were found to statistically significantly predict performance on the third 

grade PSSA-M Data Analysis and Probability subtest with a good model fit, F (3, 489) = 22.708, 
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p < .0005.  The R² for the full regression model was 12% with an adjusted R² of 12%. This 

indicates a weak effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the spring of first grade 

accounted for the most amount of variance on third grade PSSA-M Data Analysis and 

Probability performance (R = .320; adjusted R² = .101).  The second regression model included 

the MBSP-C in the fall of first grade which increased total variance of PSSA-M Data Analysis 

and Probability explained by MBSP-C in the fall and spring of first grade to 11% (R = .336; 

adjusted R² = .109).  This increase in total variance is statistically significant (p = .016).  The 

third regression model included winter of first grade MBSP-C data (R = .350; adjusted R² = 

.117).  The increase in total variance explained by the addition of MBSP-C winter data is 

statistically significant (p = .024).  However, the addition of MBSP-C winter had minimal impact 

on the variance for practical purposes.  

 The strength of the relationship between the full model and performance on the Data 

Analysis and Probability subtest is moderate in magnitude.  Resource availability and sex in first 

grade did not significantly contribute to the prediction of third grade PSSA-M Data Analysis and 

Probability performance.  Regression coefficients and standard errors for the full regression 

model are summarized in Table 20. 

Table 20 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Data Analysis and Probability 
Subtest From First Grade MBSP-C Fall, Winter, and Spring Data. 

Variable B SE B β 
Constant 6.892** .234  
MBSP-C spring .079 .017 .279** 
MBSP-C winter -.077 .026 -.139* 
MBSP-C fall .043 .019 .137* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient.  N = 510. * p < .05, ** p 
<.001 
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 All of the β values from the independent variables included in the full regression model 

are statistically significant.  When β values are compared, first grade MBSP-C spring scores have 

the largest impact on third grade PSSA-M Data Analysis and Probability scores.  First grade 

MBSP-C winter scores have a lower, but still significant impact on the prediction of third grade 

PSSA-M Data Analysis and Probability scores.  The relationship between MBSP-C in the spring 

and fall with PSSA-M Data Analysis and Probability performance is positive.  This means an 

increase in MBSP-C spring or fall scores represents a score increase on the PSSA-M Data 

Analysis and Probability subtest.  MBSP-C winter data have a negative β values.  This is 

interpreted to mean that in a prediction model, an increase in MBSP-C winter performance 

would predict a decrease in performance on the PSSA-M Data Analysis and Probability subtest.  

Based on first grade data, PSSA-M Data Analysis and Probability subtest scores increased .079 

points for each MBSP-C spring digit correct, .043 points for each MBSP-C fall digit correct, and 

decreased .08 points for each MBSP-C winter digit correct.  

Second Grade Multiple Linear Regression  

 Second grade data from all the independent variables were entered into a stepwise linear 

regression for each of the PSSA-M dependent variables.  The results for each dependent variable 

are reported in the following sections.  Table 21 provides a summary of all second grade 

regression models with corresponding R, R², and adjusted R² values. 
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Table 21 

Summary of Second Grade Stepwise Multiple Linear Regression Models 
Dependent Variable Model and Predictor Variables R R² Adjusted R² 
PSSA-M Composite Model 1: MBSP-C winter  .509 .259 .257 
 Model 2: MBSP-C winter, MBSP-C   

   Spring 
.534 .285 .283 

 Model 3: MBSP-C winter, MBSP-C  
  spring, MBSP-C fall 

.548 .301 .297 

 Model 4: MBSP-C winter, MBSP-C  
  spring, MBSP-C fall, resource       
  availability  

.560 .313 .308 

     
Numbers and 
Operations 

Model 1: MBSP-C winter .440 .194 .193 
Model 2: MBSP-C winter, MBSP-C    
  Spring 

.473 .223 .221 

Model 3: MBSP-C winter, MBSP-C  
  spring, resource availability  

.481 .231 .228 

     
Measurement Model 1: MBSP-C winter .355 .126 .125 
 Model 2: MBSP-C winter, MBSP-C  

  Fall 
.387 .150 .148 

 Model 3: MBSP-C winter, MBSP-C  
  fall, MBSP-C spring  

.402 .161 .158 

 Model 4: MBSP-C winter, MBSP-C  
  fall, MBSP-C spring, sex 

.408 .166 .162 

 Model 5: MBSP-C winter, MBSP-C  
  fall, MBSP-C spring, sex, resource    
  availability  

.413 .171 .165 

     
Geometry Model 1: MBSP-C winter .294 .086 .085 
 Model 2: MBSP-C winter, resource  

  availability  
.313 .098 .095 

     
Algebraic Concepts Model 1: MBSP-C winter .388 .151 .150 
 Model 2: MBSP-C winter, MBSP-C  

   Spring 
.415 .173 .170 

 Model 3: MBSP-C winter, MBSP-C  
   spring, resource availability  

.427 .182 .179 

     
Data Analysis and 
Probability  

Model 1: MBSP-C spring .297 .088 .087 
Model 2: MBSP-C spring, MBSP-C  
  Fall 

.311 .096 .094 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics. PSSA Composite N = 569, Numbers and Operations N = 804, Measurement N = 787, 
Geometry N = 569, Algebraic Concepts N = 804, Data Analysis and Probability N = 789. 
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 Multiple linear regression of PSSA-M Composite with second grade independent 

variables.  A stepwise multiple linear regression was completed to predict performance on the 

third grade PSSA-M Composite from MBSP-C probes administered in the fall, winter, and 

spring of second grade, sex, and resource availability.  The analysis generated four regression 

models.  The sex of second grade students did not significantly contribute to the overall variance 

of PSSA-M Composite in the spring of third grade.   Second grade MBSP-C data in the fall, 

winter, and spring and resource availability statistically significantly predicted performance on 

the third grade PSSA-M Composite.  The model is a good fit for the data, F (4, 539) = 61.468, p 

< .0005.  The R² for the full regression model was 31% with an adjusted R² of 31%.  This 

indicates a substantial effect size (Cohen, 1988).   

 The R value for the first regression model identified MBSP-C in the winter of second 

grade as having the strongest relationship with third grade PSSA-M Composite (R = .509).  The 

second regression model for PSSA-M Composite included winter and spring MBSP-C data for 

second grade and generated an R value of .534.  The third regression model added MBSP-C in 

the fall of second grade and increased R to .548.  The fourth regression model included resource 

availability with R = .560.  These R values indicate a strong predictive relationship between third 

grade PSSA-M composite scores and MBSP-C data in the fall, winter, spring and resource 

availability in second grade. 

 Based on the first regression model, second grade MBSP-C winter data accounts for the 

largest variance, 26% of overall PSSA-M performance administered in the spring of third grade.  

The second regression model included second grade MBSP-C spring data which increased the 

variance to 28%.  The increase in the total variance accounted for is statistically significant (p < 
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.0005).   The adjusted R² increased to 30% with the addition of second grade MBSP-C fall data 

(p = .001) and 31% (p = .002) when resource availability was added to the regression model.   

 Regression coefficients and standard errors for the full regression model are summarized 

in Table 22.  The full model is reported because it accounts for the most variance and includes 

the independent variables which have a statistically significant impact on the dependent variable.   

Table 22 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Composite From Second Grade 
Resource Availability and MBSP-C Fall, Winter, and Spring Data. 

Variable B SE B β 
Constant 1105.438** 25.570  
MBSP-C winter 5.885 1.232 .265** 
MBSP-C spring 3.645 1.023 .190** 
MBSP-C fall 4.821 1.523 .145* 
Resource availability 42.387 13.496 .114* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 569. * p < .05, ** p 
<.001 
 
 All of the β values from the independent variables included in the full regression model 

are statistically significant.  When β values were compared, second grade MBSP-C winter scores 

have the most significant impact on third grade PSSA-M Composite scores.  Second grade 

MBSP-C fall and winter scores have a similar impact on third grade PSSA-M Composite scores, 

followed by resource availability, which had the least amount of impact on third grade PSSA-M 

Composite scores.  The relationship between the independent variables and dependent variable is 

positive.  This means an increase in MBSP-C scores represents a score increase on the PSSA-M 

Composite.  The β value of resource availability, which is a dichotomous variable, is interpreted 

to mean student who did not receive free and reduced lunch in the second grade cohort 

demonstrated higher scores on the third grade PSSA-M composite.  Based on second grade data, 

PSSA-M Composite scores increased 5.885 points for each MBSP-C winter digit correct, 3.645 

points for each MBSP-C spring digit correct, and 4.821 points for each MBSP-C fall digit 
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correct. Students who were not receiving free or reduced lunch performed 42.387 points higher 

than those who were receiving free or reduced lunch.     

 Multiple linear regression of PSSA-M Numbers and Operations subtest with second 

grade independent variables.   A stepwise multiple linear regression was conducted to predict 

performance on the third grade PSSA-M Numbers and Operations subtest from MBSP-C probes 

administered in the fall, winter, and spring of second grade, sex, and resource availability.  The 

stepwise regression generated three regression models.  MBSP-C in the winter, spring and 

resource availability of second grade were found to statistically significantly predict performance 

on the third grade PSSA-M Numbers and Operations subtest, F (3, 783) = 78.352, p < .0005.  

The R² for the full regression model was 23% with an adjusted R² of 23%.  This indicates a 

moderate effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the winter of second grade 

accounted for the most amount of variance on third grade PSSA-M Numbers and Operations 

performance (R = .440; adjusted R² = .193).  The second regression model included the MBSP-C 

spring data which increased total variance to 22% (R = .473; adjusted R² = .221).  The increase in 

total variance accounted for with the addition of second grade MBSP-C spring data is 

statistically significant (p <.0005).  The third regression model included resource availability in 

second grade as having a statistically significant relationship to third grade PSSA-M Numbers 

and Operations performance.  Resource availability accounted for a significant increase in the 

total variance explained (R = .481; adjusted R² = .228; p = .002).  Educational systems may opt 

to exclude resource availability from the regression model.  The addition of resource availability 

did result in a statistically significant increase to the adjusted R².  However, the increase in 
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variance may not be worth the time and effort for educational systems to obtain resource 

availability data.   

 An R value of .481 indicates a moderately strong relationship between the full regression 

model and performance on the Numbers and Operations subtest on the third grade PSSA-M.  The 

sex of second grade students and MBSP-C in the fall of second grade did not significantly 

predict performance on third grade PSSA-M Numbers and Operations subtest or significantly 

contribute to the variance.  Regression coefficients and standard errors for the full regression 

model are summarized in Table 23. 

Table 23 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Numbers and Operations Subtest 
From Second Grade Resource Availability and MBSP-C Winter and Spring Data. 

Variable B SE B β 
Constant 21.015** .747  
MBSP-C winter .185 .034 .251** 
MBSP-C spring .158 .030 .241** 
Resource availability 1.088 .391 .088* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics SE B = Standard error of unstandardized regression coefficient. N = 821. * p < .05, ** p 
<.001 
 
 All of the β values from the independent variables included in the full regression model 

are statistically significant.  A comparison of β values indicate second grade MBSP-C winter 

scores have the most significant impact on third grade PSSA-M Numbers and Operations subtest 

scores, with a β value of .251.  Second grade MBSP-C spring scores have a similar, but slightly 

less, impact on third grade PSSA-M Numbers and Operations subtest scores (β = .241).  When 

compared to other variables included in the prediction model, resource availability had the least 

amount of impact on the third grade Numbers and Operations subtest.  The relationship between 

the independent variables and dependent variable is positive.  This means an increase in MBSP-

C scores represents a score increase on the PSSA-M Numbers and Operations subtest.  The β 
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value of resource availability, which is a dichotomous variable, is interpreted to mean students 

who did not receive free and reduced lunch in the second grade cohort demonstrated higher 

scores on the third grade PSSA-M Numbers and Operations subtest.  Based on second grade 

data, PSSA-M Number and Operations subtest scores increased .185 points for each MBSP-C 

winter digit correct and .158 points for each MBSP-C spring digit correct.  Students who were 

not receiving free or reduced lunch performed 1.088 points higher than those who were receiving 

free or reduced lunch.     

 Multiple linear regression of PSSA-M Measurement subtest with second grade 

independent variables.   A stepwise multiple linear regression was performed to predict 

performance on the third grade PSSA-M Measurement subtest from MBSP-C probes 

administered in the fall, winter, and spring of second grade, sex, and resource availability.  The 

stepwise regression created five models. This suggests that all five second grade variables are 

statistically significantly related to performance on the third grade PSSA-M Measurement 

subtest, F (5, 781) = 32.162, p < .0005.  The R² for the full regression model was 17% with an 

adjusted R² of 17%.  This indicates a moderate effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the winter of second grade 

accounted for the most amount of variance on third grade PSSA-M Measurement performance 

(R = .355; adjusted R² = .125).  The second regression model included MBSP-C in the fall of 

second grade which increased total variance explained to 15% (R = .387; adjusted R² = .148).  

The increase in total variance explained with the addition of MBSP-C fall data to the regression 

model was statistically significant (p <.0005).  The third independent variable included in the 

regression model was spring MBSP-C data (R = .402; adjusted R² = .158) followed by sex (R = 

.408; adjusted R² = .162) and resource availability (R = .413; adjusted R² = .165).  All increases 
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in variance are statistically significant (p = .001; p = .032; p = .039).  However, educational 

systems may choose to exclude sex and resource availability data without significantly impacting 

the adjusted R².  Regression coefficients and standard errors for the full regression model are 

summarized in Table 24. 

Table 24 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Measurement Subtest From 
Second Grade Resource Availability, Sex, and MBSP-C Fall, Winter, and Spring Data. 

Variable B SE B β 
Constant 5.398** .325  
MBSP-C winter .034 .013 .135** 
MBSP-C fall .056 .016 .149** 
MBSP-C spring .035 .011 .157** 
Sex .285 .128 .073* 
Resource availability .285 .138 .069* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 821. * p < .05, ** p 
<.001 
 
 All of the β values from the independent variables included in the full regression model 

are statistically significant.  A comparison of β values indicate second grade MBSP-C spring 

scores have the most significant impact on third grade PSSA-M Measurement subtest scores.  

Second grade MBSP-C fall and winter scores have a similar impact on third grade PSSA-M 

Measurement subtest scores, followed by sex and resource availability.  The relationship 

between the independent variables and dependent variable is positive.  This means an increase in 

MBSP-C scores represents a score increase on the PSSA-M Measurement subtest.  The β value 

of resource availability, which is a dichotomous variable, is interpreted to mean students who did 

not receive free and reduced lunch in the second grade cohort demonstrated higher scores on the 

third grade PSSA-M Measurement subtest.  The β value of sex, also a dichotomous variable, 

indicates males out performed females on the PSSA-M Measurement subtest.  Based on second 

grade data, PSSA-M Measurement subtest scores increased .034 points for each MBSP-C winter 
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digit correct, .056 points for each MBSP-C fall digit correct, and .035 points for each MBSP-C 

spring digit correct. Students who were not receiving free or reduced lunch performed .285 

points higher than those who were receiving free or reduced lunch.  Males performed .285 higher 

than females on the PSSA-M Measurement subtest. 

 Multiple linear regression of PSSA-M Geometry subtest with second grade 

independent variables.   A stepwise multiple linear regression was conducted to predict 

performance on the third grade PSSA-M Geometry subtest from MBSP-C probes administered in 

the fall, winter, and spring of second grade, sex, and resource availability.  The stepwise 

regression generated two regression models, both having a good fit to the data.  MBSP-C in the 

winter of second grade and resource availability were found to statistically significantly predict 

performance on the third grade PSSA-M Geometry subtest, F (2, 541) = 29.439, p < .0005.  The 

R² for the full regression model was 10% with an adjusted R² of 10%.  This indicates a weak 

effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the winter of second grade 

accounted for the most amount of variance on third grade PSSA-M Geometry performance (R = 

.294; adjusted R² = .085).  The second regression model included resource availability of second 

grade students.  The addition of resource availability to the regression model increased total 

variance explained to 10% (R = .313; adjusted R² = .095).  The increase in total variance 

explained when resource availability was added to the regression model was statistically 

significant (p = .008).  The full regression model has a moderate relationship to the PSSA-M 

Geometry subtest.  MBSP-C in the fall and spring and sex of students in second grade did not 

significantly predict performance on third grade PSSA-M Geometry subtest.  Regression 

coefficients and standard errors for the full regression model are summarized in Table 25. 
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Table 25 

Stepwise Multiple Regression Predicting Third Grade PSSA-M Geometry Subtest From Second 
Grade MBSP-C Winter Data and Resource Availability. 

Variable B SE B β 
Constant 7.470** .207  
MBSP-C winter .044 .007 .277** 
Resource availability .295 .110 .110* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 569. * p < .05, ** p 
<.001 
 
 All of the β values from the independent variables included in the full regression model 

are statistically significant.  The β values indicate second grade MBSP-C winter scores have the 

most significant impact on third grade PSSA-M Geometry subtest scores.  The independent 

variable and dependent variable have a positive relationship.  This means that in a prediction 

model, an increase in MBSP-C winter scores results in an increase on the PSSA-M Geometry 

subtest.  The β value of resource availability, which is a dichotomous variable, is interpreted to 

mean students who did not receive free and reduced lunch in the second grade cohort 

demonstrated higher scores on the third grade PSSA-M Geometry subtest.  Based on second 

grade data, PSSA-M Geometry subtest scores increased .044 points for each MBSP-C winter 

digit correct.  Students who were not receiving free or reduced lunch performed .295 points 

higher than those who were receiving free or reduced lunch.     

 Multiple linear regression of PSSA-M Algebraic Concepts subtest with second grade 

independent variables.   A stepwise multiple linear regression was performed to predict 

performance on the third grade PSSA-M Algebraic Concepts subtest from MBSP-C probes 

administered in the fall, winter, and spring of second grade, sex, and resource availability.  The 

stepwise regression generated three regression models.  MBSP-C in the winter and spring and 

resource availability of second grade were found to statistically significantly predict performance 

on the third grade PSSA-M Algebraic Concepts subtest, F (3, 783) = 58.040, p < .0005.  The R² 
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for the full regression model was 18% with an adjusted R² of 18%.  This indicates a moderate 

effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the winter of second grade 

accounted for the most amount of variance on third grade PSSA-M Algebraic Concepts 

performance (R = .388; adjusted R² = .150).  The second regression model entered MBSP-C in 

the spring of second grade, this increased total variance of PSSA-M Algebraic Concepts 

explained by MBSP-C in the winter and spring of second grade to 17% (R = .415; adjusted R² = 

.170).  This increase is statistically significant (p < .0005.)  The third regression model, also 

statistically significant (p = .003), included resource availability (R = .427; adjusted R² = .179).  

The R values indicate a moderately strong predictive relationship between the independent 

variables in the full regression model and performance on the Algebraic Concepts subtest of the 

third grade PSSA-M.  MBSP-C in the fall of second grade and sex of student did not 

significantly contribute to the variance or predict performance on third grade PSSA-M Algebraic 

Concepts.  Regression coefficients and standard errors for the full regression model are 

summarized in Table 26. 

Table 26 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Algebraic Concepts Subtest From 
Second Grade Resource Availability and MBSP-C Winter and Spring Data. 

Variable B SE B β 
Constant 6.445** .218  
MBSP-C winter .047 .010 .224** 
MBSP-C spring .038 .009 .205** 
Resource availability .342 .114 .098* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 821. * p < .05, ** p 
<.001 
 
 All of the β values from the independent variables included in the full regression model 

are statistically significant.  The β values indicate second grade MBSP-C winter scores have the 
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most significant impact on third grade PSSA-M Algebraic Concepts subtest scores.  MBSP-C 

spring scores also have a significant, but smaller impact on PSSA-M Algebraic Concepts scores.  

The β value of resource availability, which is a dichotomous variable, is interpreted to mean 

students who did not receive free and reduced lunch in the second grade cohort demonstrated 

higher scores on the third grade PSSA-M Algebraic Concepts subtest.  Resource availability had 

the least amount of impact on third grade PSSA-M Algebraic outcomes (β = .098).  The 

independent variables and dependent variable have a positive relationship.  This means that in a 

prediction model, an increase in MBSP-C winter or spring scores results in an increase on the 

PSSA-M Algebraic Concepts subtest.  Based on second grade data, PSSA-M Algebraic Concepts 

subtest scores increased .047 points for each MBSP-C winter digit correct and .038 points for 

each MBSP-C spring digit correct.  Students who were not receiving free or reduced lunch 

performed .342 points higher on the PSSA-M Algebraic Concepts subtest than those who were 

receiving free or reduced lunch.    

 Multiple linear regression of PSSA-M Data Analysis and Probability subtest with 

second grade independent variables.   A stepwise multiple linear regression was conducted to 

predict performance on the third grade PSSA-M Data Analysis and Probability subtest from 

MBSP-C probes administered in the fall, winter, and spring of second grade, sex, and resource 

availability.  The stepwise regression generated two models.  MBSP-C in the fall and spring of 

second grade were found to statistically significantly predict performance on the third grade 

PSSA-M Data Analysis and Probability subtest, F (2, 784) = 41.836, p < .0005.  The R² for the 

full regression model was 10% with an adjusted R² of 9%.  This indicates a weak effect size 

(Cohen, 1988).   



 

221 

 The outcome of the stepwise regression indicated MBSP-C in the spring of second grade 

accounted for the most amount of variance on third grade PSSA-M Data Analysis and 

Probability performance (R = .297; adjusted R² = .087).  The second regression model included 

the MBSP-C in the fall of second grade which increased total variance of PSSA-M Data 

Analysis and Probability that can be accounted for by MBSP-C in the fall and spring of second 

grade to 9% (R = .311; adjusted R² = .094).  The increase in adjusted R² is statistically significant 

(p = .009).  MBSP-C in the fall and spring were moderately predictive of student performance 

the Data Analysis and Probability subtest of third grade PSSA-M.  MBSP-C winter of second 

grade, resource availability and student sex did not significantly contribute to the variance or 

predict performance on third grade PSSA-M Data Analysis and Probability.  Regression 

coefficients and standard errors for the full regression model are summarized in Table 27. 

Table 27 
 
Stepwise Multiple Regression Predicting Third Grade PSSA-M Data Analysis and Probability 
Subtest From Second Grade MBSP-C Fall and Spring Data. 

Variable B SE B β  
Constant 7.499** .147  
MBSP-C spring .045 .008 .235** 
MBSP-C fall .035 .013 .109* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 821. * p < .05, ** p 
<.001 
 
 The β values from the independent variables included in the full regression model are 

statistically significant.  A comparison of β values indicate second grade MBSP-C spring scores 

have the most significant impact on third grade PSSA-M Data Analysis and Probability subtest 

scores.  MBSP-C fall scores also have a significant impact on PSSA-M Data Analysis and 

Probability scores, but less than half the impact of MBSP-C spring scores. The independent 

variables and dependent variable have a positive relationship.  This means that in a prediction 

model, an increase in MBSP-C spring or fall scores results in an increase on the PSSA-M Data 
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Analysis and Probability subtest.  Based on second grade data, PSSA-M Data Analysis and 

Probability subtest scores increased .045 points for each MBSP-C spring digit correct and .035 

points for each MBSP-C fall digit correct.  

Third Grade Multiple Linear Regression  

 Third grade data from all the independent variables were entered into a stepwise linear 

regression for each of the PSSA-M dependent variables.  The results for each dependent variable 

are reported in the following sections. Please refer to Table 28 for a summary of each regression 

model with corresponding R, R², and adjusted R² values. 
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Table 28 

Summary of Third Grade Stepwise Regression Models 
 
Dependent Variable 

 
Model and Predictor Variables 

 
R 

 
R² 

Adjusted 
R² 

PSSA-M Composite Model 1: MBSP-C winter  .569 .324 .323 
 Model 2: MBSP-C winter, MBSP-C  

  spring 
.613 .375 .374 

 Model 3: MBSP-C winter, MBSP-C  
  spring, MBSP-C fall 

.623 .388 .386 

 Model 4: MBSP-C winter, MBSP-C  
  spring, MBSP-C fall, resource     
  availability  

.630 .397 .394 

     
Numbers and Operations Model 1: MBSP-C spring .535 .286 .286 

 Model 2: MBSP-C spring, MBSP-C  
  winter 

.580 .336 .335 

 Model 3: MBSP-C spring, MBSP-C  
  winter, sex 

.585 .342 .340 

 Model 4: MBSP-C spring, MBSP-C  
  winter, sex, MBSP-C fall 

.589 .347 .345 

 Model 5: MBSP-C spring, MBSP-C  
  winter, sex, MBSP-C, resource  
  availability  

.592 .351 .348 

     
Measurement Model 1: MBSP-C spring .387 .150 .149 
 Model 2: MBSP-C spring, MBSP-C  

  winter 
.418 .175 .173 

 Model 3: MBSP-C spring, MBSP-C  
  winter, sex 

.427 .182 .180 

 Model 4: MBSP-C spring, MBSP-C  
  winter, sex, resource availability  

.432 .187 .184 

 Model 5: MBSP-C spring, MBSP-C  
  winter, sex, resource availability,    
  MBSP-C fall   

.436 .190 .186 

     
Geometry Model 1: MBSP-C spring .349 .122 .121 
 Model 2: MBSP-C spring, resource  

  availability  
.361 .130 .128 

 Model 3: MBSP-C spring, resource  
  availability, MBSP-C winter 

.369 .136 .133 

     
Algebraic Concepts Model 1: MBSP-C winter .413 .171 .170 
 Model 2: MBSP-C winter, MBSP-C  

  Spring 
.430 .185 .184 
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Table 28 Summary of Third Grade Stepwise Regression Models  
 
Dependent Variable 

 
Model and Predictor Variables 

 
R 

 
R² 

Adjusted 
R² 

 
 

Model 3: MBSP-C winter, MBSP-C   
  spring, resource availability  

.436 .190 .188 

 Model 4: MBSP-C winter, MBSP-C  
  spring, resource availability, sex 

.439 .193 .190 

     
Data Analysis and 
Probability  

Model 1: MBSP-C spring .369 .136 .136 
Model 2: MBSP-C spring, MBSP-C  
  Winter 

.396 .157 .155 

 Model 3: MBSP-C spring, MBSP-C  
  winter, MBSP-C fall  

.399 .159 .157 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics.  PSSA Composite N = 886, Numbers and Operations N = 1144, Measurement N = 1144, 
Geometry N = 886, Algebraic Concepts N = 1177, Data Analysis and Probability N = 1144. 
 
 
 Multiple linear regression of PSSA-M Composite with third grade independent 

variables.  A stepwise multiple linear regression was conducted to predict performance on the 

third grade PSSA-M Composite from MBSP-C probes administered in the fall, winter, and 

spring of third grade, sex, and resource availability.  The analysis generated four regression 

models.   Third grade MBSP-C data in the fall, winter, and spring and resource availability 

statistically significantly predicted performance on the third grade PSSA-M Composite, F (4, 

881) = 145.083, p < .0005 for the full regression model.  The R² for the full regression model 

was 40% with an adjusted R² of 39%.  This indicates a substantial effect size (Cohen, 1988).   

 The R value for the first regression model identified MBSP-C in the winter of third grade 

as having the strongest relationship with third grade PSSA-M Composite (R = .569).  The second 

regression model for PSSA-M Composite included winter and spring MBSP-C data for third 

grade and generated an R value of .613.  The third regression model added MBSP-C in the fall of 

third grade and increased R to .623.  The fourth regression model included resource availability 

with R = .630.  These R values indicate a strong predictive relationship.   
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 Based on the first regression model, third grade MBSP-C winter data accounts for the 

largest amount of variance, 32% on overall PSSA-M performance, administered in the winter of 

third grade.  The second regression model included third grade MBSP-C spring data which 

increased the amount of explained variance to 37%.  The increase in variance from the first to 

second regression model is statistically significant (p < .0005).  The adjusted R² increased to 39% 

with the addition of third grade MBSP-C fall data and remained at 39% when resource 

availability was added to the regression model.  Given the relatively small increase in variance 

explained when resource availability was added to the regression model, it would be acceptable 

to exclude it from the prediction model.  The sex of third grade students did not significantly 

contribute to the overall variance of PSSA-M Composite in the spring of third grade.   

 Regression coefficients and standard errors for the full regression model are summarized 

in Table 29.  The full model is reported because it accounts for the most variance and includes 

the independent variables which have a statistically significant impact on the dependent variable.   

Table 29 
 
Stepwise Multiple Regression Predicting PSSA-M Composite From Third Grade Resource 
Availability and MBSP-C Fall, Winter, and Spring Data. 

Variable B SE B β 
Constant 1022.820** 20.478  
MBSP-C winter 5.904 .853 .275** 
MBSP-C spring 5.151 .690 .274** 
MBSP-C fall 3.786 .873 .145** 
Resource availability 34.185 9.58 .095** 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 886. * p < .05, ** p 
<.001 
 
 The β value for each independent variables included in the full regression model were 

statistically significant.  A comparison of β values indicate third grade MBSP-C winter scores 

have the most significant impact on third grade PSSA-M Composite scores.  It should be noted, 

third grade MBSP-C spring scores have a nearly identical impact on third grade PSSA-M 
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Composite scores, with only a .001 difference in β values.  MBSP-C in the fall has a statistically 

significant, but smaller, impact on PSSA-M Composite scores.  The impact of resource 

availability was also statistically significant, but had the least impact on third grade PSSA-M 

outcomes. The relationship between the independent variables and dependent variable is 

positive.  This means that in the prediction model, an increase in MBSP-C scores results in an 

increase on PSSA-M Composite scores.  The β value of resource availability, which is a 

dichotomous variable, is interpreted to mean students who received free or reduced lunch 

performed lower on the third grade PSSA-M composite than those who did not.  Based on third 

grade data, PSSA-M Composite scores increased 5.904 points for each MBSP-C winter digit 

correct, 5.151 points for each MBSP-C spring digit correct, and 3.786 points for each MBSP-C 

fall digit correct. Students who were not receiving free or reduced lunch performed 34.185 points 

higher than those who were receiving free or reduced lunch.     

 Multiple linear regression of PSSA-M Numbers and Operations subtest with third 

grade independent variables.   A stepwise multiple linear regression was performed to predict 

performance on the third grade PSSA-M Numbers and Operations subtest from MBSP-C probes 

administered in the fall, winter, and spring of third grade, sex, and resource availability.  The 

stepwise regression generated five regression models.  MBSP-C in the winter, spring and fall in 

addition to, sex and resource availability of third grade were found to statistically significantly 

predict performance on the third grade PSSA-M Numbers and Operations subtest, F (5, 1138) = 

122.924, p < .0005.  The R² for the full regression model was 35% with an adjusted R² of 35%.  

This indicates a substantial effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the spring of third grade 

accounted for the most amount of variance on third grade PSSA-M Numbers and Operations 
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performance (R = .535; adjusted R² = .286).  The second regression model entered MBSP-C 

winter data which increased total variance to 34% (R = .580; adjusted R² = .335).  This increase 

is statistically significant (p < .0005).  The third regression model indicated sex had a statistically 

significant relationship to third grade PSSA-M Numbers and Operations (R = .585; adjusted R² = 

.340).  The increase in variance when sex was added to the regression model was statistically 

significant (p = .002).  The fourth regression model entered MBSP-C fall data (R = .589; 

adjusted R² = .345).  The fifth regression model identified resource availability as having 

statistically significant contribution to the overall variance (R = .592; adjusted R² = .348).  The 

increase in variance explained from the fourth to fifth regression model is statistically significant 

(p = .011).  However, the increase is variance (.003) may not be relevant from an application 

standpoint.  An R value of .589 signifies a strong relationship between the full regression model 

and student performance on the Numbers and Operations subtest.   

 Regression coefficients and standard errors for the full regression model are summarized 

in Table 30.  The full model is reported because it accounts for the most variance and includes 

the independent variables which have a statistically significant impact on the dependent variable.   

Table 30 
 
Stepwise Multiple Regression Predicting PSSA-M Numbers and Operations Subtest From Third 
Grade Resource Availability, Sex, and MBSP-C Fall, Winter, and Spring Data. 

Variable B SE B β 
Constant 16.735** .716  
MBSP-C spring .178 .020 .302** 
MBSP-C winter .177 .023 .267** 
Sex  .790 .254 .074* 
MBSP-C fall .069 .024 .084* 
Resource availability .694 .274 .062* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 1143. * p < .05, ** p 
<.001 
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 The β values for each independent variables included in the full regression model are 

statistically significant.  A comparison of β values indicate third grade MBSP-C spring scores 

have the most significant impact on third grade PSSA-M Numbers and Operations subtest scores.  

Third grade MBSP-C winter scores have the second most significant impact on third grade 

PSSA-M Numbers and Operations subtest scores.  MBSP-C fall scores have less of an impact on 

PSSA-M Numbers and Operations scores when compared to MBSP-C in the spring and winter.  

Sex and resource availability have the least amount of influence on third grade Numbers and 

Operations outcomes.  The relationship between the independent variables and dependent 

variable is positive.  This means that in the prediction model, an increase in MBSP-C scores 

represents a score increase on the PSSA-M Numbers and Operations subtest.  The β value of sex, 

which is a dichotomous variable, is interpreted to mean males in the third grade cohort 

demonstrated higher scores on the third grade PSSA-M Numbers and Operations subtest.  The β 

value of resource availability, also a dichotomous variable, is interpreted to mean students who 

received free or reduced lunch performed lower on the third grade PSSA-M Numbers and 

Operations subtest than those who did not.  Based on third grade data, PSSA-M Numbers and 

Operations subtest scores increased .178 points for each MBSP-C spring digit correct, .177 

points for each MBSP-C winter digit correct, and .069 points for each MBSP-C fall digit correct. 

Students who were not receiving free or reduced lunch performed .694 points higher on the 

PSSA-M Numbers and Operations subtest than those who were receiving free or reduced lunch.  

Males performed .790 points higher than females. 

 Multiple linear regression of PSSA-M Measurement subtest with third grade 

independent variables.   A stepwise multiple linear regression was performed to predict 

performance on the third grade PSSA-M Measurement subtest from MBSP-C probes 
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administered in the fall, winter, and spring of third grade, sex, and resource availability.  The 

stepwise regression created five models.  This suggests that all five variables are statistically 

significantly related to performance on the third grade PSSA-M Measurement subtest with a 

moderately strong relationship, F (5, 1138) = 53.363, p < .0005.  The R² for the full regression 

model was 19% with an adjusted R² of 19%.  This indicates a moderate effect size (Cohen, 

1988).   

 The outcome of the stepwise regression indicated MBSP-C in the spring of third grade 

accounted for the most amount of variance on PSSA-M Measurement performance (R = .387; 

adjusted R² = .149).  The second regression model included MBSP-C in the winter of third grade 

which increased total variance to 17% (R = .418; adjusted R² = .173).  The increase in adjusted 

R² from the first regression model is statistically significant (p < .0005).  The third independent 

variable included in the regression model was sex of student (R = .427; adjusted R² = .180).  The 

fourth regression model included MBSP-C fall data (R = .432; adjusted R² = .184).  The fifth 

regression model identified resource availability as having a statistically significant contribution 

to the overall variance explained (R = .436; adjusted R² = .186).  The increase in total variance 

explained from the third to the fifth regression model is 0.6%.  For practical purposes the 

increase in variance, while statistically significant, may not be worth the additional time and 

effort required to collect additional data.  It is likely MBSP-C fall data will be readily available 

from normal universal screening procedures.  However, sex and resource availability can be 

excluded without significantly decreasing the amount of variance explained.  Regression 

coefficients and standard errors for the full regression model are summarized in Table 31. 
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Table 31 
 
Stepwise Multiple Regression Predicting PSSA-M Measurement Subtest From Third Grade 
Resource Availability, Sex, and MBSP-C Fall, Winter, and Spring Data. 

Variable B SE B β 
Constant 4.658** .295  
MBSP-C spring .048 .008 .219** 
MBSP-C winter .044 .010 .182** 
Sex  .329 .105 .084* 
Resource availability .285 .113 .069* 
MBSP-C fall .021 .010 .069* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 1143. * p < .05, ** p 
<.001 
 
 The β values for the independent variables included in the full regression model are 

statistically significant.  A comparison of β values indicate third grade MBSP-C spring scores 

have the most significant impact on third grade PSSA-M Measurement subtest scores.  Third 

grade MBSP-C winter scores have the second most significant impact on third grade PSSA-M 

Measurement subtest scores.  MBSP-C fall scores (β = .069) and resource availability (β = .069) 

have much less impact on PSSA-M Measurement scores than MBSP-C in the spring and winter.  

In fact, in the prediction model, sex has more influence on third grade PSSA-M Measurement 

outcomes (β = .084) than MBSP-C in the fall and resource availability.  The relationship between 

the independent variables and dependent variable is positive.  This means that in the prediction 

model, an increase in MBSP-C scores results in increased PSSA-M Measurement subtest scores.  

The β value of sex, which is a dichotomous variable, is interpreted to mean males in the third 

grade cohort demonstrated higher scores on the third grade PSSA-M Measurement subtest.  The 

β value of resource availability, also a dichotomous variable, is interpreted to mean students who 

received free or reduced lunch performed lower on the third grade PSSA-M Measurement 

subtest than those who did not.  Based on third grade data, PSSA-M Measurement subtest scores 

increased .048 points for each MBSP-C spring digit correct, .044 points for each MBSP-C winter 
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digit correct, and .021 points for each MBSP-C fall digit correct. Students who were not 

receiving free or reduced lunch performed .285 points higher on the PSSA-M Measurement 

subtest than those who were receiving free or reduced lunch.  Males performed .329 points 

higher than females. 

 Multiple linear regression of PSSA-M Geometry subtest with third grade 

independent variables.   A stepwise multiple linear regression was performed to predict 

performance on the third grade PSSA-M Geometry subtest from MBSP-C probes administered in 

the fall, winter, and spring, sex, and resource availability.  The stepwise regression generated 

three regression models.  MBSP-C in the spring and winter of third grade and resource 

availability were found to statistically significantly predict performance on the third grade PSSA-

M Geometry subtest, F (3, 882) = 46.200, p < .0005.  The R² for the full regression model was 

14% with an adjusted R² of 13%.  This indicates a moderate effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the spring of third grade 

accounted for the most amount of variance on third grade PSSA-M Geometry performance (R = 

.349; adjusted R² = .121).  The second regression model added resource availability which 

increased total variance explained to 13% (R = .361; adjusted R² = .128).  The third regression 

modeled identified MBSP-C winter as a significant contributor to the variance of PSSA-M 

Geometry performance, with a moderately strong predictive relationship (R = .369; adjusted R² = 

.133).  While the increase in adjusted R² is statistically significant, it may not be necessary to 

include both MBSP-C winter and resource availability in a prediction model.  From an 

application standpoint, MBSP-C winter data will likely be available.  It may not be worth the 

additional time and effort to collect resource availability data given the overall small increase in 

variance when it was added in the second regression model.   
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 MBSP-C in the fall and sex of students in third grade did not significantly predict 

performance on third grade PSSA-M Geometry subtest or significantly contribute to the 

variance.  Regression coefficients and standard errors for the full regression model are 

summarized in Table 32. 

Table 32 
 
Stepwise Multiple Regression Predicting PSSA-M Geometry Subtest From Third Grade Resource 
Availability and MBSP-C Winter and Spring Data. 

Variable B SE B β 
Constant 7.079** .178  
MBSP-C spring .036 .006 .260** 
Resource availability .240 .084 .092* 
MBSP-C winter .016 .007 .103* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 886. * p < .05, ** p 
<.001 
 
 The β value of the independent variables included in the full regression model are 

statistically significant.  A comparison of β values indicate third grade MBSP-C spring scores 

had the most significant impact on third grade PSSA-M Geometry subtest scores.  Third grade 

MBSP-C winter scores had the second most significant impact on third grade PSSA-M 

Geometry subtest scores.  MBSP-C fall scores had a statistically significant (p = .018) but much 

less impact on PSSA-M Geometry scores than MBSP-C in the spring.  Resource availability has 

the least amount of influence on third grade PSSA-M geometry scores with a β value of .092.  

The relationship between the independent variables and dependent variable is positive.  This 

means that in the prediction model, an increase in MBSP-C scores results in a score increase on 

the PSSA-M Geometry subtest.  The β value of resource availability, a dichotomous variable, is 

interpreted to mean students who received free or reduced lunch performed lower on the third 

grade PSSA-M Geometry subtest than those who did not.  Based on third grade data, PSSA-M 

Geometry subtest scores increased .036 points for each MBSP-C spring digit correct and .016 
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points for each MBSP-C winter digit correct.  Students who were not receiving free or reduced 

lunch performed .240 points higher on the PSSA-M Geometry subtest than those who were 

receiving free or reduced lunch.  

 Multiple linear regression of PSSA-M Algebraic Concepts subtest with third grade 

independent variables.   A stepwise multiple linear regression was conducted to predict 

performance on the third grade PSSA-M Algebraic Concepts subtest from MBSP-C probes 

administered in the fall, winter, and spring of third grade, sex, and resource availability.  The 

stepwise regression generated four regression models.  MBSP-C in the winter and spring, 

resource availability, and sex of student in third grade had a statistically significant predictive 

relationship with performance on the third grade PSSA-M Algebraic Concepts subtest, F (4, 

1139) = 67.912, p < .0005.  The R² for the full regression model was 19% with an adjusted R² of 

19%.  This indicates a moderate effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C in the winter data accounted 

for the most amount of variance on third grade PSSA-M Algebraic Concepts performance (R = 

.413; adjusted R² = .170).  The second regression model entered MBSP-C spring data which 

increased total variance of PSSA-M Algebraic Concepts that can be accounted for by MBSP-C 

in the winter and spring of third grade to 18% (R = .430; adjusted R² = .184).  The third 

regression model added resource availability (R = .436; adjusted R² = .188).  Sex was identified 

as a significant additional contributor to variance in the fourth regression model (R = .439; 

adjusted R² = .190).  While the increase in adjusted R² is statistically significant, it may not be 

necessary to include sex and resource availability in the prediction model.  From an application 

standpoint, it is difficult to justify the additional data collection given the small contribution to 

overall variance. 
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 The full regression model has a moderately strong predictive relationship to third grade 

performance on the Algebraic Concepts subtest.  MBSP-C in the fall of third grade did not 

significantly contribute to the variance or predict performance on third grade PSSA-M Algebraic 

Concepts.  Regression coefficients and standard errors for the full regression model are 

summarized in Table 33. 

Table 33 
 
Stepwise Multiple Regression Predicting PSSA-M Algebraic Concepts Subtest From Third Grade 
Resource Availability, Sex, and MBSP-C Winter and Spring Data. 

Variable B SE B β 
Constant 5.129** .265  
MBSP-C winter .066 .008 .300** 
MBSP-C spring .030 .007 .153** 
Resource availability .260 .102 .070* 
Sex  .190 .094 .054* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 1143. * p < .05, ** p 
<.001 
 
 Each independent variable included in the full regression model generated statistically 

significant β values.  A comparison of β values indicated third grade MBSP-C winter scores had 

the most significant impact on third grade PSSA-M Algebraic Concepts subtest scores. Third 

grade MBSP-C spring scores had almost half the impact of MBSP-C winter scores on third grade 

PSSA-M Algebraic Concepts scores.  Resource availability had a small, but statistically 

significant impact on third grade PSSA-M Algebraic Concepts outcomes.  In the prediction 

model, sex had the least amount of influence on third grade PSSA-M Algebraic Concepts 

outcomes.  The relationship between the independent variables and dependent variable is 

positive.  This means that in the prediction model, an increase in MBSP-C scores results in an 

increase on PSSA-M Algebraic Concepts subtests scores.  The β value of resource availability, 

which is a dichotomous variable, is interpreted to mean students receiving free or reduced lunch 

performed lower on the third grade PSSA-M Algebraic Concepts than those who did not.  The β 
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value of sex, also a dichotomous variable, is interpreted to mean males in the third grade cohort 

demonstrated higher scores on the third grade PSSA-M Algebraic Concepts subtest than females.  

Based on third grade data, PSSA-M Algebraic Concepts subtest scores increased .066 points for 

each MBSP-C winter digit correct and .030 points for each MBSP-C spring digit correct. 

Students who were not receiving free or reduced lunch performed .260 points higher on the 

PSSA-M Algebraic Concepts subtest than those who were receiving free or reduced lunch.  

Males performed .190 points higher than females. 

 Multiple linear regression of PSSA-M Data Analysis and Probability subtest with 

third grade independent variables.   A stepwise multiple linear regression was conducted to 

predict performance on the third grade PSSA-M Data Analysis and Probability subtest from 

MBSP-C probes administered in the fall, winter, and spring of third grade, sex, and resource 

availability.  The stepwise regression generated three regression models.  MBSP-C in the fall, 

winter, and spring were found to statistically significantly predict performance on the PSSA-M 

Data Analysis and Probability subtest with a moderately strong relationship, F (3, 1140) = 

72.106, p < .0005.  The R² for the full regression model was 16% with an adjusted R² of 16%.  

This indicates a moderate effect size (Cohen, 1988).   

 The outcome of the stepwise regression indicated MBSP-C spring data accounted for the 

most amount of variance on third grade PSSA-M Data Analysis and Probability performance (R 

= .369; adjusted R² = .136).  The second regression model included MBSP-C winter data.  This 

increased total variance on PSSA-M Data Analysis and Probability performance explained by 

MBSP-C in the winter and spring to 16% (R = .396; adjusted R² = .155).  MBSP-C fall data were 

added into the third regression model and resulted in a statistically significant contribution to the 

prediction model (R = .399; adjusted R² = .157).  The increase in variance from the second to 
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third regression model with the addition of MBSP-C fall is statistically significant but results in 

only a small increase to the total variance explained by the model.   

 Resource availability and student sex did not significantly contribute to the variance or 

predict performance on third grade PSSA-M Data Analysis and Probability.  Regression 

coefficients and standard errors for the full regression model are summarized in Table 34. 

Table 34 
 
Stepwise Multiple Regression Predicting PSSA-M Data Analysis and Probability Subtest From 
Third Grade MBSP-C Fall, Winter, and Spring Data. 

Variable B SE B β 
Constant 6.611** .154  
MBSP-C spring .039 .007 .224** 
MBSP-C winter .032 .008 .165** 
MBSP-C fall .016 .008 .066* 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics; SE B = Standard error of unstandardized regression coefficient. N = 1143. * p < .05, ** p 
<.001 
 
 Each independent variable included in the full regression model generated statistically 

significant β values.  A comparison of the β values indicate third grade MBSP-C spring scores 

have the most significant impact on third grade PSSA-M Data Analysis and Probability subtest 

scores.  Third grade MBSP-C winter scores have the second most significant impact on third 

grade PSSA-M Data Analysis and Probability subtest scores.  MBSP-C fall scores had the least 

amount of impact on PSSA-M Data Analysis and Probability scores.  The relationship between 

the independent variables and dependent variable is positive.  This means that in the prediction 

model, an increase in MBSP-C scores results in a score increase on the PSSA-M Data Analysis 

and Probability subtest.  Based on third grade data, PSSA-M Data Analysis and Probability 

subtest scores increased .039 points for each MBSP-C spring digit correct, .032 points for each 

MBSP-C winter digit correct, and .016 points for each MBSP-C fall digit correct.  
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Pearson Correlations for Independent and Dependent Variables 

MLR analysis was used to explore the broad research question of the present study: To 

what extent does a universal mathematics screening, MBSP-C in first, second, and third grade, 

sex, and SES predict math achievement as reported on the five subtests of the PSSA-M in third 

grade?  However, of the several hypotheses generated by this broad research question required 

correlations between the dependent and independent variables at specific points in times.  These 

hypotheses are as follows, (a) it is hypothesized that student performance in the fall of first grade 

will have the weakest correlation with PSSA performance and student performance in the spring 

of third grade will have the strongest correlation with third grade PSSA-M achievement due to 

time proximity between MBSP-C and PSSA-M administration, (b) it is hypothesized that MBSP-

C will have the strongest correlation with the Numbers and Operations subtest of the PSSA-M, 

(c) it is hypothesized that resource availability will account for a significant amount of variance 

on PSSA-M achievement, with the potential to decrease the longer students are in a high quality 

educational setting, and (d) it is hypothesized that sex and resource availability will have a 

moderate association with math achievement, based on highlights from the 2007 TIMSS 

(Gonzales et al., 2009).   

 The relationship between the independent and dependent variables were analyzed with 

Pearson correlations.  Pearson correlations were generated to determine the strength of the 

relationship between each independent variable with PSSA-M scores.  The strength of the 

relationship between sex, resource availability and MBSP-C in the fall, winter, and spring of 

first, second, and third grade were also examined.  Please refer to Tables 35 and 36 for a 

summary of the Pearson correlation coefficients (r).  An r value of greater than 0.1 to less than 

0.3 indicates a weak correlation.  Correlation coefficients ranging from greater than 0.3 to less 
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than 0.5 indicate a moderate correlation.  Correlation coefficients greater than 0.5 indicate a 

strong correlation.  The relationship between variables can be positive and negative in nature 

(Fields, 2013; Laerd Statistics, 2015).   

Table 35 

Pearson Correlations for MBSP-C Fall, Winter, and Spring of First, Second, and Third Grade 
with PSSA-M Scores  

    First Grade MBSP-C  Second Grade MBSP-C  Third Grade MBSP-C 
 Fall Winter Spring  Fall Winter Spring  Fall Winter Spring 
PSSA-M 
Composite 
 

.388** .501** .522**  .431** .514** .489**  .469** .572** .561** 

Numbers and 
Operations 
 

.204** .420** .501**  .352** .450** .451**  .399** .536** .546** 

Measurement  
 

.240** .339** .406**  .343** .374** .380**  .295** .392** .406** 

Geometry  
 

.309** .418** .396**  .190** .287** .259**  .190** .297** .349** 

Algebraic 
Concepts  
 

.272** .387** .416**  .314** .402** .403**  .301** .418** .379** 

Data Analysis 
and 
Probability  

 .023  .277** .324**  .245** .281** .306**  .273** .355** .379** 

Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics. First Grade Cohort PSSA-M Composite and Geometry subtest MBSP-C Fall N = 266, 
MBSP-C Winter N = 269, MBSP-C Spring N = 272; Numbers and Operations, Measurement, Algebraic Concepts, 
and Data Analysis and Probability MBSP-C Fall N = 498, MBSP-C Winter N = 501, MBSP-C Spring N = 508.  
Second Grade Cohort PSSA-M Composite and Geometry subtest MBSP-C Fall N = 549, MBSP-C Winter N = 556, 
MBSP-C Spring N = 564; Numbers and Operations, Measurement, Algebraic Concepts, and Data Analysis and 
Probability MBSP-C Fall N = 793, MBSP-C Winter N = 807, MBSP-C Spring N = 817. Third Grade Cohort PSSA-
M Composite and Geometry subtest MBSP-C Fall N = 901, MBSP-C Winter N = 917, MBSP-C Spring N = 927; 
Numbers and Operations, Measurement, Algebraic Concepts, and Data Analysis and Probability MBSP-C Fall N = 
1160, MBSP-C Winter N = 1187, MBSP-C Spring N = 1201.  ** p <.01  
 
 The correlation coefficients summarized in Table 35 indicate a moderate to strong 

positive correlation between MBSP-C in the fall, winter, and spring of first, second, and third 

grade with PSSA-M composite scores in third grade.  The strength of correlation between 

MBSP-C and PSSA-M subtests varied (r = .023 to .561) based on the time of administration and 

grade level.   
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 Correlation between MBSP-C in first grade and PSSA-M subtests in third grade.  A 

weak, positive association was observed between first grade MBSP-C fall data and third grade 

PSSA-M Numbers and Operations subtest scores, r = .204, p < .0005.  The correlation between 

MBSP-C and PSSA-M Numbers and Operations was moderate based on winter data (r = .420, p 

< .0005) and strong based on spring data (r = .501, p < .0005).    

 There was a weak, positive correlation between first grade MBSP-C fall data and scores 

on the third grade PSSA-M Measurement subtest (r = .240, p < .0005).  A moderate correlation 

was observed between MBSP-C in the winter of first grade and performance on the third grade 

PSSA-M Measurement subtest (r = .339, p < .0005).  The relationship between MBSP-C and 

PSSA-M Measurement remained moderate in the spring (r = .406, p < .0005).  The correlation 

between first grade MBSP-C in the fall (r = .309, p < .0005), winter (r = .418, p < .0005), and 

spring (r = .396, p < .0005) with performance on the PSSA-M Geometry subtest in third grade 

was moderate.   

 A weak, positive correlation was observed between first grade MBSP-C scores in the fall 

and third grade PSSA-M Algebraic Concepts scores (r = .272, p < .0005).  There was a positive, 

moderate correlation between MBSP-C in the winter (r = .387, p < .0005) and spring (r = .416, p 

< .0005) of first grade with performance on the PSSA-M Algebraic Concepts subtest in third 

grade.   

 A significant correlation was not observed between first grade MBSP-C fall data and 

performance on the third grade PSSA-M Data Analysis and Probability subtest.  However, a 

weak, positive associate was observed in the winter of first grade (r = .277, p < .0005).  There 

was a positive, moderate correlation between MBSP-C in the spring of first grade and 
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performance on the PSSA-M Data and Analysis subtest administered in the spring of third grade 

(r = .324, p < .0005).   

 Correlation between MBSP-C in second grade and PSSA-M subtests in third grade.  

A moderate, positive association was observed between second grade MBSP-C in the fall (r = 

.352, p < .0005), winter (r = .450, p < .0005), and spring (r = .451, p < .0005) with third grade 

PSSA-M Numbers and Operations subtest scores.  There was a moderate, positive correlation 

between second grade MBSP-C fall data and scores on the third grade PSSA-M Measurement 

subtest (r = .343, p < .0005).  A moderate, positive correlation was observed between MBSP-C 

in the winter of second grade and performance on the third grade PSSA-M Measurement subtest 

(r = .374, p < .0005).  The relationship between MBSP-C and PSSA-M Measurement remained 

moderate in the spring (r = .380, p < .0005).   

 Weak, positive correlations were observed between second grade MBSP-C in the fall (r = 

.190, p < .0005), winter (r = .287, p < .0005), and spring (r = .259, p < .0005) with performance 

on the PSSA-M Geometry subtest in third grade.  There was a moderate, positive correlation 

between second grade MBSP-C scores in the fall and third grade PSSA-M Algebraic Concepts 

scores (r = .314, p < .0005).  There was a positive, moderate correlation between MBSP-C in the 

winter (r = .402, p < .0005) and spring (r = .403, p < .0005) of second grade with performance 

on the PSSA-M Algebraic Concepts subtest in third grade.   

 A weak, positive correlation was observed between second grade MBSP-C fall data and 

performance on the third grade PSSA-M Data Analysis and Probability subtest (r = .245, p < 

.0005).  The correlation between MBSP-C in the winter of second grade and performance on the 

PSSA-M Data Analysis subtest in third grade remained weak and positive  (r = .281, p < .0005).  

There was a positive, moderate correlation between MBSP-C in the spring of second grade and 
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performance on the PSSA-M Data and Analysis subtest administered in the spring of third grade 

(r = .306, p < .0005).   

 Correlation between MBSP-C in third grade and PSSA-M subtests in third grade.  

A moderate, positive association was observed between third grade MBSP-C fall data and third 

grade PSSA-M Numbers and Operations subtest scores, r = .399, p < .0005.  The correlation 

between MBSP-C and PSSA-M Numbers and Operations was strong based on winter data (r = 

.536, p < .0005) and spring data (r = .546, p < .0005).    

 There was a weak, positive correlation between third grade MBSP-C fall data and scores 

on the third grade PSSA-M Measurement subtest (r = .295, p < .0005).  A moderate correlation 

was observed between MBSP-C in the winter of third grade and performance on the third grade 

PSSA-M Measurement subtest (r = .392, p < .0005).  The relationship between MBSP-C and 

PSSA-M Measurement remained moderate in the spring (r = .406, p < .0005).   

 There was a weak, moderate correlation between MBSP-C in the fall of third grade and 

performance on the PSSA-M Geometry subtest (r = .190, p < .0005).  The relationship between 

MBSP-C in the winter and PSSA-M Geometry scores remained weak (r = .297, p < .0005).  

There was a moderate, positive correlation between MBSP-C in the spring with performance on 

the Geometry subtest (r = .349, p < .0005).   

 A moderate, positive correlation was observed between third grade MBSP-C scores in the 

fall and third grade PSSA-M Algebraic Concepts scores (r = .301, p < .0005).  There was a 

positive, moderate correlation between MBSP-C in the winter (r = .418, p < .0005) and spring (r 

= .379, p < .0005) of third grade with performance on the PSSA-M Algebraic Concepts subtest 

in third grade.   
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 A weak, positive correlation was observed between third grade MBSP-C fall data and 

performance on the third grade PSSA-M Data Analysis and Probability subtest (r = .273, p < 

.0005).  The correlation between MBSP-C in the winter of third grade and performance on the 

PSSA-M Data Analysis subtest in third grade was moderate and positive (r = .355, p < .0005).  

There was a positive, moderate correlation between MBSP-C in the spring of third grade and 

performance on the PSSA-M Data and Analysis subtest administered in the spring of third grade 

(r = .379, p < .0005).   

 Correlation between sex, resource availability and mathematical achievement. 

Pearson correlations were generated to determine what, if any, correlation exists between sex, 

resource availability and mathematical achievement.  Please refer to the correlation coefficients 

(r) summarized in Table 36.   
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Table 36  

Pearson Correlations Between Sex, Resource Availability, PSSA-M Scores and MBSP-C 
    First Grade   Second Grade   Third Grade 
 

Sex 
Resource 

Availability  
 Sex 

Resource 
Availability 

 Sex 
Resource 

Availability 
PSSA-M    
Composite 
 

-.028 .179**  .031 .201*  .015 .228** 

Numbers and 
Operations 
 

.074 .110*  .063 .156**  .037 .201** 

Measurement  
 

.124** .099*  .098** .135**  .058* .176** 

Geometry  
 

-.039 .144*  -.016 .142**  -.020 .168** 

Algebraic 
Concepts  
 

.000 .125**  .026 .170**  .027 .165** 

Data Analysis 
and Probability 
 

.024 .064  .034 .104**  .016 .136** 

MBSP-C Fall 
 

.023 .131**  .074* .174**  -.007 .137** 

MBSP-C Winter 
 

.084 .168**  .071* .153**  -.032 .178** 

MBSP-C Spring  .096* .124**  .049 .162**  -.042 .215** 
Note. MBSP-C = Monitoring Basic Skills Progress- Computation Probe; PSSA-M = Pennsylvania System of School 
Assessment, Mathematics.  First Grade Cohort PSSA-M Composite and Geometry subtest MBSP-C Fall N = 266, 
MBSP-C Winter N = 269, MBSP-C Spring N = 272; Numbers and Operations, Measurement, Algebraic Concepts, 
and Data Analysis and Probability MBSP-C Fall N = 498, MBSP-C Winter N = 501, MBSP-C Spring N = 508.  
Second Grade Cohort PSSA-M Composite and Geometry subtest MBSP-C Fall N = 549, MBSP-C Winter N = 556, 
MBSP-C Spring N = 564; Numbers and Operations, Measurement, Algebraic Concepts, and Data Analysis and 
Probability MBSP-C Fall N = 793, MBSP-C Winter N = 807, MBSP-C Spring N = 817. Third Grade Cohort PSSA-
M Composite and Geometry subtest MBSP-C Fall N = 901, MBSP-C Winter N = 917, MBSP-C Spring N = 927; 
Numbers and Operations, Measurement, Algebraic Concepts, and Data Analysis and Probability MBSP-C Fall N = 
1160, MBSP-C Winter N = 1187, MBSP-C Spring N = 1201.  * p < .05, ** p <.01 
 
 Student sex did not demonstrate a significant correlation with mathematical outcomes in 

first, second, or third grade, with the exception of performance on the PSSA-M Measurement 

subtest.  Sex demonstrated a weak, positive correlation with Measurement outcomes in third 

grade for first, second, and third grade cohorts.  There was also a weak, positive correlation 

between sex and MBSP-C in the spring of first grade and fall and winter of second grade. 
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 Resource availability in first grade demonstrated a weak, positive correlation with 

performance on MBSP-C in the fall (r = .131, p = .003), winter (r = .168, p < .0005), and spring 

(r = .124, p = .005) of first grade.  Resource availability in first grade demonstrated a weak, 

positive correlation with the PSSA-M Composite (r = .179, p = .003), Numbers and Operations 

subtest (r = .110, p = .013), Geometry subtest (r = .144, p = .017), and Algebraic Concepts 

subtest (r = .125, p = .005) in third grade.   

 Resource availability in second grade demonstrated a weak, positive correlation with 

performance on MBSP-C in the fall (r = .174, p < .0005), winter (r = .153, p < .0005), and spring 

(r = .162, p < .0005) of second grade.  Resource availability in second grade demonstrated a 

weak, positive correlation with the PSSA-M Composite (r = .201, p < .0005), Numbers and 

Operations subtest (r = .156, p < .0005), Measurement subtest (r = .135, p < .0005), Geometry 

subtest (r = .142, p = .001), Algebraic Concepts subtest (r = .170, p <.0005), and Data Analysis 

and Probability subtest (r = .104, p = .003) in third grade.   

 Resource availability in third grade demonstrated a weak, positive correlation with 

performance on MBSP-C in the fall (r = .137, p < .0005), winter (r = .178, p < .0005), and spring 

(r = .215, p < .0005) of third grade.  Resource availability in third grade demonstrated a weak, 

positive correlation with the PSSA-M Composite (r = .228, p < .0005), Numbers and Operations 

subtest (r = .201, p < .0005), Measurement subtest (r = .176, p < .0005), Geometry subtest (r = 

.168, p <.0005), Algebraic Concepts subtest (r = .165, p < .0005), and Data Analysis and 

Probability subtest (r = .136, p < .0005) in third grade.   
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Summary 

 This chapter reviews the statistical analysis used to answer the research question.  

Complications to the study were acknowledged.  Descriptive statistics, tests of assumption for 

MLR, and finally the results of the stepwise MLR models with first, second, and third grade data 

were reported and discussed.  MBSP-C in the fall, winter, and spring of first, second, and third 

grade were found to have a strong predictive relationship with overall performance on the PSSA-

M.  The predictive relationship of the independent variables with the PSSA-M subtests varied 

based on grade level.  However, the increases in the total variance explained on PSSA-M 

subtests consistently increased from first to third and from second to third grade.  First grade 

predictor variables frequently accounted for more variance on PSSA-M subtests when compared 

to second grade variables.  MBSP-C probes in the winter and spring consistently demonstrated 

moderate to strong predictive relationships with PSSA-M subtests.  The relationship between the 

PSSA-M subtests MBSP-C in the fall, sex, and resource availability were less consistently 

predictive and demonstrated a weaker predictive relationship than MBSP-C winter and spring 

data.   

 These findings support the hypothesis that MBSP-C in the fall of first grade will have the 

weakest correlation with PSSA-M.  The hypothesis that the strength of the predictive relationship 

will increase with proximity to the third grade PSSA-M is supported.  However, R and adjusted 

R² values when predicting PSSA-M Composite in first and second grade are very similar and 

both indicate a strong predictive relationship and effect size.  It was further hypothesized that 

MBSP-C would have the strongest predictive relationship with the Numbers and Operations 

subtest.  This hypothesis is rejected, as MBSP-C demonstrated a stronger predictive relationship 

with PSSA-M Composite scores than the Numbers and Operations subtest.  The predictive 
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relationship of sex and resource availability with PSSA-M scores are inconsistent.  In the 

instances where sex was predictive of PSSA-M, the increase in variance was statistically 

significant but small in relevance for purposes of practical application.  With the exception of 

first grade, males outperformed females when sex was identified as a significant predictor in the 

regression model.  In the regression models with resource availability identified as predictive of 

PSSA-M, the increase in variance accounted for by the model was statistically significant, but 

small in relevance for purposes of practical application.  It should be noted that resource 

availability was more frequently identified as a significant predictor the longer students were in 

school.   
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CHAPTER V 

DISCUSSION 

Introduction 

 The current research study investigated the predictive validity of a brief math 

computation probe, Monitoring Basic Skills Progress, Computation probe (MBSP-C) in the fall, 

winter, and spring of first, second, and third grades with the Pennsylvania System of School 

Assessment Mathematics exam (PSSA-M) administered in the spring of third grade.  The 

relationship between mathematics achievement and resource availability and sex was also 

explored.  This chapter offers a review of the research, findings and discussion of data analysis, 

study limitations, suggestions for future research, and implications for the field of school 

psychology. 

Overview 

 Educational reform supported by Every Student Succeeds Act (ESSA) and initiated by its 

predecessor, No Child Left Behind (NCLB), pushed education systems to provide high quality, 

effective instruction to all students.  Schools responded to this by developing systems to provide 

differentiated instruction and early intervention to students who are at-risk for academic, social, 

and emotional deficits.  Multi-tiered Systems of Support (MTSS) is the term given to this service 

delivery model.   

 MTSS models focus on the improvement of student outcomes in academics and 

social/emotional development by providing high quality instruction with differentiation based on 

student need.  There are six key features of successful MTSS models, outlined by the National 

Association of School Psychologists (NASP): (a) differentiated instruction within a high quality 

core curriculum, (b) universal screening, assessment, and monitoring progress; (c) focus on 



 

248 

prevention and intervention, (d) fidelity of interventions, (e) evidence-based practices,  and (f) 

professional development (Cowan et al., 2013; Stoiber, 2014).  Universal screenings are one of 

the key components of MTSS systems.  Universal screenings are defined as “the systematic 

assessment of all children within a given class, grade, school building, or school district, on 

academic and/or social emotional indicators that the school personnel and community have 

agreed are important” (Ikeda, Neessen, & Witt, 2008, p. 103).   

 In comparison to reading, there is a relative dearth of research in the area of mathematics 

to provide educators appropriate direction (Clarke, Haymond, & Gersten, 2014; Methe, 2009).  

As multi-tiered models of service delivery continue to grow in implementation, and science, 

technology, engineering, and mathematics (STEM) skills become more of an educational focus, 

it is vital that research-based practices are also applied to the area of mathematics (Gersten et al., 

2012; VanDerHeyden, 2010).   

 A comprehensive review of research indicates mathematical deficits remain persistent in 

students who are low-achieving.  If mathematical deficits are not addressed with rigorous 

instruction and intervention the performance gap widens as students matriculate through their 

school career.  Early identification and intervention to address mathematical difficulties should 

be a principal focus for educational systems.  Research indicates students who initially place in 

the bottom 10th percentile when entering kindergarten but were performing above the 10th 

percentile upon exiting only had a 30% chance of performing below the 10th percentile five years 

later while in fifth grade (Morgan et al., 2009, 2011).  Without intervention in kindergarten, 

however, students who demonstrate math skills within the bottom 10th percentile in kindergarten 

have a 70% likelihood of remaining below the 10th percentile five years later (Martin et al., 2012; 

Morgan et al., 2009; 2011).  This highlights the need for and efficacy of early identification and 
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intervention.  MTSS models employ universal screening measures to identify students who may 

be at-risk for developing deficits for the purpose of early intervention. 

 The present study focuses on the predictive strength of a computation measure, MBSP-C 

with a criterion measure, the PSSA-M.  This study builds upon previous research utilizing 

MBSP-C probes (Fuchs, Hamlett, & Fuchs, 1999) as a universal screening measure.  Shapiro, 

Keller, Lutz, Santoro, and Hintze (2006) found MBSP-C, given the same school year as the 

PSSA-M, to have a moderate to strong predictive relationship with third grade PSSA-M 

Composite scores.  Keller-Margulis, Shapiro, and Hintze (2008), later explored the predictive 

strength of MBSP-C in first and second grade, using the same data set previously collected for 

the Shapiro et al. (2006) study.  Results of that analysis indicated a strong relationship between 

MBSP-C in the fall (r = .52), winter (r = .54), and spring (r = .60) of second grade and PSSA 

scores.  First grade MBSP-C fall data demonstrated a weak (r = .27), but statistically significant 

relationship with PSSA scores in third grade.  MBSP-C in the winter (r = .59) and spring (r = 

.50) demonstrated a strong relationship with third grade PSSA scores.  Several concerns were 

noted with this study which warranted replication.  Concerns include the exclusion of students 

identified as being in need of special education services and a relatively small sample size.   

 A review of research regarding the impact of resource availability on mathematical 

learning outcomes is inconsistent.  However, there is a growing body of research that suggests 

students living in low socio-economic status (SES) homes are likely to demonstrate difficulty 

with mathematical learning.  Mathematical deficits may also be more persistent for students 

living in poverty when compared to students who are not living in poverty.  These findings 

suggest students living in low SES homes many benefit significantly from early, intensive math 

intervention (Reardon, 2013).    
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 There is a mixed body of research on whether or not sex has an impact on mathematical 

learning outcomes.  Some research indicates a significant difference in mathematical learning 

between males and females, but other research disputes an achievement gap between males and 

females (McGraw et al., 2006; Stoet & Geary, 2013).  Given inconsistent findings regarding the 

role of sex and SES on students’ mathematical proficiency, these factors are further investigated 

to determine what, if any, impact these have on mathematical learning outcomes. 

Research Question and Hypotheses 

The broad research question under investigation in the current study is: To what extent 

does a universal mathematics screening, MBSP-C, in first, second, and third grade, sex, and free 

and reduced meal status predict math achievement as reported on PSSA-M Composite scores and 

five subtests of the PSSA-M in third grade?  The dependent variables considered within this 

research question included MBSP-C – fall, winter, and spring completed in first, second, and 

third grade; PSSA-M Numbers and Operations scores; PSSA-M Measurement scores; PSSA-M 

Geometry scores; PSSA-M Algebraic Concepts scores; PSSA-M Data Analysis and Probability 

scores; and PSSA-M Composite scores.   

It was hypothesized that MBSP-C scores in first, second, and third grade would predict 

math achievement as measured by the composite score and five subtests of the PSSA-M in third 

grade.  Based on previous research, it was hypothesized the correlation between MBSP-C and 

PSSA-M scores would be moderate to strong.  It was hypothesized that student performance in 

the fall of first grade would have the weakest correlation with PSSA-M performance and student 

performance in the spring of third grade would have the strongest correlation with third grade 

PSSA-M achievement due to time proximity between MBSP-C and PSSA-M administration.   
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It was also hypothesized that MBSP-C would have the strongest correlation with the 

Numbers and Operations subtest of the PSSA-M.  The Numbers and Operations subtest of the 

PSSA-M asks students to demonstrate an understanding of numbers, ways of representing 

numbers, relationships among numbers and number systems, an understanding of the meanings 

of operations, use of operations and understanding how they relate to each other, the ability to 

compute accurately and fluently, and the capacity to make reasonable estimates.  These skills 

closely resemble those assessed on the MBSP-C probes.  Therefore, it was predicted the 

strongest predictive relationship would exist between MBSP-C and the Numbers and Operations 

subtest of the PSSA-M.   

It was further hypothesized that resource availability would account for a significant 

amount of variance on PSSA-M achievement, with the potential to decrease the longer students 

are in a high quality educational setting.  Conversely, previous research indicated students living 

in poverty are more resistant to improvement in mathematics instruction, so there is potential for 

the amount of variance explained by resource availability to remain the same or increase the 

longer a student is in an educational setting.  It was hypothesized that sex and resource 

availability would have a moderate association with math achievement, based on highlights from 

the 2007 Trends in International Mathematics and Science Study (TIMSS; Gonzales et al., 2009). 

Hypotheses with MBSP-C as a Predictor Variable  

To what extent does a universal mathematics screening, MBSP-C, in first, second, and 

third grade, sex, and free and reduced meal status predict math achievement as reported on 

PSSA-M Composite scores and five subtests of the PSSA-M in third grade?  The results of the 

multiple linear regression (MLR) analysis indicate a strong predictive relationship between 

MBSP-C in the fall, winter, and spring of first, second, and third grade with PSSA-M 
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performance in the spring of third grade.  MBSP-C in third grade demonstrated the strongest 

predictive relationship with PSSA-M composite scores with an R value of .630 and explained 

39% of total variance.  First grade demonstrates the second strongest predictive relationship with 

an R value of .586 for the full regression model.  First grade data explained 33% of total variance 

of third grade PSSA-M Composite outcomes. Second grade variables demonstrated the weakest 

predictive relationship (R = .560) and accounted for 31% of total variance. 

Pearson correlation were analyzed to determine the predictive relationship of each 

MBSP-C administration with third grade PSSA-M performance.  Results of Pearson correlations 

indicate after the fall of first grade, the strength of the relationship of MBSP-C with third grade 

PSSA-M Composite outcomes remain relatively consistent with moderate to strong predictive 

relationships from the winter of first grade through the spring of third grade.  It further was 

hypothesized that student performance in the fall of first grade would have the weakest 

correlation with PSSA-M performance and student performance in the spring of third grade 

would have the strongest correlation with third grade PSSA-M achievement.  This was 

hypothesized given the proximity between MBSP-C and PSSA-M administration.  Previous 

research indicated the strength of prediction increased the shorter the duration between 

administration of the screening tool and criterion measure.  When validating a number sense 

screening tool for use in kindergarten and first grade, Jordan et al. (2010) found a significant 

increase in the main effect over the course of six administrations as students demonstrated age-

appropriate changes in achievement.   

MBSP-C in the fall of first grade (r = .388) demonstrates a moderate relationship with 

third grade PSSA-M composite scores.  However, by the winter of first grade, MBSP-C 

demonstrated a strong predictive relationship with third grade PSSA-M composite scores (r = 
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.501).  The relationship between MBSP-C in first, second, and third grade with PSSA-M 

composite scores increased from fall to winter, but then decreased slightly from winter to spring.  

MBSP-C winter scores consistently demonstrated the strongest predictive relationship with third 

grade PSSA-M composite scores.  Therefore, this hypothesis is rejected when using MBSP-C to 

predict overall performance on the PSSA-M.  Based on the results of the MLR, MBSP-C spring 

scores do not have the strongest predictive relationship with PSSA-M.   

 Pearson correlations indicated the strength of the relationship increased with proximity 

between MBSP-C and PSSA-M administration.  Therefore, the hypothesis is accepted when 

looking at the predictive relationship between MBSP-C in the fall, winter, and spring of first, 

second, and third grades with third grade PSSA-M subtest scores.  Correlation coefficients 

increased from fall to winter and winter to spring for each PSSA-M subtest at each grade level, 

with the exception of the relationship between first grade MBSP-C and Geometry.  MBSP-C in 

the winter (r = .418) of first grade demonstrates a stronger strength of relationship than MBSP-C 

spring scores (r = .396).   

 It was hypothesized that MBSP-C would have the strongest correlation with the numbers 

and operations portion of the PSSA-M.  The Numbers and Operations subtest of the PSSA-M 

requires students demonstrate an understanding of numbers, ways of representing numbers, 

relationships among numbers and number systems, meanings of operations, use of operations 

and understanding how they relate to each other, the ability to compute accurately and fluently, 

and the capacity to make reasonable estimates.  These skills closely resemble those assessed on 

the MBSP-C probes.  Therefore, it was predicted the relationship between MBSP-C and the 

Numbers and Operations subtest of the PSSA-M would be the strongest.   
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 This hypothesis is rejected.  MBSP-C demonstrates the strongest relationship with PSSA-

M Composite scores.  However, by the spring of first, second, and third grade the relationship 

between MBSP-C and Numbers and Operations is second only to PSSA-M composite scores at 

each grade level.  The strength of the relationship between MBSP-C in the fall, winter, and 

spring at each grade level is consistently weakest with third PSSA-M Data Analysis and 

Probability subtest scores.  As anticipated, these results suggest computation skills have the 

weakest relationship with skills represented on the third grade Data Analysis and Probability 

subtest.  The Data Analysis and Probability subtest of the third grade PSSA-M requires students 

to formulate or answer questions that can be addressed with data and/or organize, display, 

interpret or analyze data (Data Recognition Corporation, 2014).  An understanding of numbers 

and computation is required to successfully complete data analysis and probability problems.  

However, data analysis and probability require a level of conceptual understanding that is not 

captured with a simple computation probe (Locuniak & Jordan, 2008).   

Hypotheses with Sex as a Predictor Variable  

 It was hypothesized that sex would have a moderate association with math achievement, 

based on highlights from the 2007 Trends in International Mathematics and Science Study 

(Gonzales et al., 2009).  An analysis of the U.S National Assessment of Educational Progress 

(NEAP) from 1990 to 2003, found that sex gaps within math achievement continue to exist, with 

males performing slightly better than females, especially in the upper end of score distributions.  

Achievement gaps between the sexes were largest in the areas of measurement, number and 

operations, and geometry (McGraw et al., 2006).  

  Pearson correlations between student sex and math achievement as measured by 

performance on the third grade PSSA-M Composite, five PSSA-M subtests, and MBSP-C probes 
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in the fall, winter, and spring of first, second, and third grade, were reviewed.  Correlation 

coefficients do not indicate a significant association between student sex and mathematical 

outcomes, with the exception of the Measurement subtest at each grade level and MBSP-C in the 

spring of first grade, fall of second grade, and winter of second grade.  Although these 

correlations are considered statistically significant, the strength of the correlations were weak.  

This means it can be said with some certainty that the correlation is not zero.  However, the 

majority of r values fall below 0.1.  The exceptions were student sex in first grade and PSSA-M 

Measurement scores in third grade, which demonstrated a weak, positive association (r = .124).  

Based on these findings, sex has little to no relationship with math performance. 

 The inclusion of sex in full MLR models was inconsistent.  Sex was found to be a 

statistically significant contributor to the overall variance explained in only five of the 18 MLR 

models generated in the present study.  It is important to differentiate between statistical 

significance and practical significance.  The instances in which sex was determined to be a 

statistically significant contribution to the regression model only increased the overall variance 

explained by very small amounts, 1% or less.  Therefore, it is important to consider whether or 

not it is relevant to include sex as a variable for application purposes.  The additional time 

required to collect these data combined with a potential to inadvertently potentiate the stigma 

around a mathematical gender gap by including sex in the regression model negate the small 

statistical contribution the inclusion of sex offers to the regression model.  This hypothesis is 

rejected.  Sex does not demonstrate a meaningful association with mathematical achievement.   

Hypotheses with Resource Availability as a Predictor Variable 

 It was hypothesized resource availability will account for a significant amount of 

variance on PSSA-M achievement, with the potential to decrease the longer students are in a 
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high quality educational setting.  However, previous research has indicated students living in 

poverty are more resistant to improvement in mathematics instruction, so there is potential for 

the amount of variance accounted for by resource availability to remain the same or increase the 

longer a student is in an educational setting (Aud et al., 2010).  Resource availability was 

determined by whether or not a student received free and reduced lunch.   

 This hypothesis is accepted.  Resource availability demonstrates a statistically significant, 

but weak, positive association with mathematical outcomes measured by MBSP-C while in first, 

second, and third grade and PSSA-M administered in the spring of third grade.  The strength of 

the relationship increased slightly from first to second grade and from second to third grade.  The 

number of full MLR models which included resource availability as a significant contributor to 

the overall variance on the PSSA-M went from zero with first grade data to five with second and 

third grade data.  This suggests resource availability becomes a more relevant predictor the 

longer students are in school.  However, more research is needed to determine whether the 

impact resource availability continues to increase, plateaus, or begins to decrease.  More research 

is also warranted to determine whether free and reduced lunch status is an appropriate way to 

determine resource availability or socio-economic status. 

 Second and third grade data analysis included resource availability in the full MLR 

regression models for PSSA-M Composite and all PSSA-M subtests, with the exception of Data 

Analysis and Probability.  While this contribution was considered statistically significant, the 

actual increase in variance explained by resource availability was relatively small.  School 

systems could choose to exclude these data from prediction models without impacting the 

integrity of MBSP-C as a universal screening tool.  It is likely the additional time and effort to 

include these data would not significantly improve student learning outcomes.  Additionally, 
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resource availability is based on participation in the free or reduced lunch program which 

requires parents to complete an application and disclose their household income.  It is possible 

that some students who would qualify for free or reduced lunch have not applied for participation 

in the program (National Forum on Educational Statistics, 2015).   

Discussion 

 The purpose of this study was to examine the predictive validity of a computation probe, 

MBSP-C, in first, second, and third grade with PSSA-M performance in third grade to determine 

its utility as a universal screening measure.  The results of this study have several findings 

relevant to the use of computation measures as universal screening tools for the identification of 

students who could benefit from additional math intervention and/or instruction.   

 First, MBSP-C demonstrates a strong predictive relationship with overall performance on 

the third grade PSSA-M as early as first grade.  The full regression model for PSSA-M with first 

grade variables included MBSP-C in the fall, winter, and spring in addition to student sex.  This 

MLR regression model accounted for 33% of variance explained on PSSA-M composite scores 

administered in third grade.  The regression model without the inclusion of sex, accounted for 

32% of the total variance explained, which is still substantial.  Pearson correlation coefficients 

indicate a moderate correlation between MBSP-C in the fall of first grade with the PSSA-M in 

third grade and a strong correlation by the winter of first grade.  These results are interpreted to 

mean that as early as winter of first grade, school systems can make a strong prediction regarding 

student learning outcomes for math in third grade.  These findings support the use of a 

computation probes as a universal screening tool in the area of mathematics.  Correlation 

coefficients of .40 or higher between the universal screening tool and a well-established criterion 

measure indicate adequate levels of predictive validity for the purpose of universally screening 
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students (Burns, Haegele, & Petersen-Brown, 2014).  MBSP-C probes from the winter of first 

grade through the spring of third grade demonstrate a moderate to strong correlation with overall 

performance on the PSSA-M administered in the spring of third grade.   

The Predictive Relationship between MBSP-C and PSSA-M Subtests 

 It was hypothesized that MBSP-C would have the strongest predictive relationship with 

the PSSA-M Numbers and Operations subtest.  This hypothesis was rejected, as the strongest 

predictive relationship was observed between MBSP-C and PSSA-M Composite scores.  

However, the relationship between MBSP-C and the Numbers and Operations subtest was 

strong, and only slightly less than the predictive relationship with PSSA-M Composite scores.  It 

is important to note, 40% to 50% of the items on the third grade PSSA-M fall under the Numbers 

and Operations subtest.  Each remaining PSSA-M subtest accounts for approximately 12% to 

15% of the items on the PSSA-M (Data Recognition Corporation, 2013).  Therefore, it can be 

concluded the PSSA-M Composite score is heavily influenced by performance on the PSSA-M 

Numbers and Operations subtest. 

 There is an essential but not definite relationship between fluency of computation skills 

and successful application and understanding of math concepts that has been likened to the 

relationship between oral reading fluency and reading comprehension (Locuniak & Jordan, 

2008).  Given this relationship, it was rationalized that computation measures would have a 

moderate predictive relationship with the remaining four subtests PSSA-M subtests despite a low 

face validity.  Measurement, Geometry, Algebraic Concepts, and Data Analysis and Probability 

subtests, demonstrate a low face validity with the MBSP-C probes.  Previous research suggests 

there is still a moderate correlation between computation skills and higher level mathematical 

thinking (Codding et al., 2015).  The present study supports these findings.  Results of the MLR 
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analysis indicate a moderate predictive relationship between MBSP-C in the fall, winter, and 

spring of first, second, and third grade and PSSA-M subtests with low face validity, 

Measurement, Geometry, Algebraic Concepts, and Data Analysis and Probability.  The moderate 

predictive relationship observed between MBSP-C and PSSA-M subtest with low face validity 

not only support the use of computation measures as a universal screener, but also has a general 

outcome measure in mathematics.  There was one oddity in the prediction models produced by 

MLR analysis.  Specifically, the MLR between first grade data and performance on the third 

grade PSSA-M Data Analysis and Probability subtest.   

 In the prediction model an increase in first grade MBSP-C winter scores resulted in lower 

scores on the PSSA-M Data Analysis and Probability subtest in third grade.  It is unknown what 

factors contributed to this atypical outcome.  It may be related to the instruction first grade 

students received from the fall to winter of first grade, which is focused primarily on 

computation skills.  This could have resulted in score improvements on the computation measure 

and rates of growth that were not maintained past this time period.  Mean scores from the first 

grade fall to first grade winter probe increased substantially, with a mean score of 3.67 in the fall 

and 14.55 in the winter.  This study would have to be replicated with a different data set to 

determine if score improvements on winter administration of MBSP-C in first grade really 

predict a score decrease on third grade PSSA-M Data Analysis and Probability performance.    

 When the predictive relationships between MBSP-C and PSSA-M subtests were analyzed 

without the consideration of other predictor variables the findings were similar to MLR results, 

with a few exceptions.  Based on the results of Pearson correlation analysis, there is a weak 

predictive relationship between MBSP-C in the fall of first grade with third grade performance 

on the Numbers and Operations subtest, Measurement subtest, and Algebraic Concepts subtest.  
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The relationship between fall MBSP-C in first grade and third grade Data Analysis and 

Probability is so small, it is negligible.  MBSP-C in the winter of first grade demonstrated a weak 

predictive relationship with Data Analysis and Probability scores in third grade.  However, the 

remaining predictive relationships between MBSP-C in first grade and PSSA-M subtests are 

moderate to strong, based on winter and spring data.   

 Based on the results of Pearson correlations, weak predictive relationships were also 

observed between MBSP-C in the fall, winter, and spring of second grade with third grade 

performance on the Geometry subtest.  There was a weak predictive relationship between second 

grade MBSP-C fall and winter administration with third grade Data Analysis and Probability 

subtest.   

 The results of Pearson correlation analysis with third grade data indicated a weak 

predictive relationship between the fall and winter administration of MBSP-C and performance 

on the Geometry subtest, MBSP-C in the fall and performance on the Measurement subtest, and 

MBSP-C in the fall and performance on the Data Analysis and Probability subtest. 

 Pearson correlations illustrate the strength of the predictive relationship is not as strong 

between MBSP-C at specific points in time as when looked at collectively with MLR.  However, 

a strong predictive relationship is observed between MBSP-C and PSSA-M composite scores 

and most subtests from the winter administration through the end of third grade.  School systems 

should interpret fall data with caution and consider reviewing spring data from the previous year 

in conjunction with fall data.  For example, in the fall data analysis teams may want to look at 

first grade spring data in addition to fall second grade data when making determinations about 

which student would benefit from additional math intervention.  Consequently, MBSP-C in the 
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winter and spring demonstrated a moderate to strong predictive relationship with overall math 

achievement despite low face validity. 

Sex as a Predictor Variable 

 Previous research regarding whether or not there is a mathematical achievement gap 

between males and females generated inconsistent findings.  Research that supports an 

achievement gap, with males outperforming females, indicated small, but statistically significant 

differences in mathematical achievement (McGraw et al., 2006; Stoet & Geary, 2013).  These 

findings are supported by the present study.  There was a weak, but statistically significant, 

contribution to the overall variance explained when first grade data were used to predict third 

grade PSSA-M Composite scores, when second grade data were used to predict third grade 

PSSA-M Measurement scores, and when third grade data were used to predict performance on 

the PSSA-M Numbers and Operations subtest, Measurement subtest, and Algebraic Concepts 

subtest.    

 However, similar to the results reported by Else-Quest et al. (2010), differences between 

male and female achievement were negligible.  The inclusion of sex as an independent variable 

indicates no to very minimal differences between male and female mathematical outcomes.  

When student sex was identified as a statistically significant contributor to variance in 

mathematical outcomes, it increased total variance explained by no more than 1%.  These 

findings suggest sex is not a meaningful predictor of math skills.  Therefore, the results of this 

study indicate student sex is not an adequate predictor variable. 

Resource Availability as a Predictor Variable 

 Previous research which investigated the correlation between SES (resource availability) 

indicated students from low-income households do not reach mathematical proficiency (NEAP, 
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U.S. Department of Education, 2015).  Disparities between the mathematical learning of students 

in low-income households and middle-class to high-income households has increased over recent 

years.  Rates of growth indicate that the improvement in mathematical performance that has been 

observed nationally cannot be generalized to students living in low-income households.  Students 

living in low-income households were also found to be more resistant to intervention (Reardon, 

2013; Reardon & Bischoff, 2011).   

 The results of the present study indicate resource availability demonstrated a weak 

correlation with future mathematical outcomes.  The variance accounted for by resource 

availability is minimal, but does increase slightly from first grade to second grade and from 

second grade to third grade.  This cautiously supports the hypothesis that the impact of poverty 

increases the longer students are in school.  However, more research is needed in this area.  It is 

important to note, the impact of resource availability on total variance accounted for on PSSA-M 

scores was statistically significant, but minimal when considering practical implications for 

collecting additional data and targeting students living in poverty for intervention.  Resource 

availability could be excluded from the prediction model without drastically altering its 

functionality.    

Limitations of the Study 

 There are several limitations to this study which should be acknowledged and considered 

when generalizing the results.  First, the archival data used in this study were from a convenience 

sample.  Use of archival data and a convenience sample created the potential for threats to 

internal and external validity.  Threats to internal validity included the variability in the quality 

and intensity of math instruction students received during the period of data collection.  While 

curricular variability is limited somewhat by the adoption of the PA Common Core curriculum, 
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the use of archival data does not permit for quality control checks of instruction.  Secondly, 

standardized administration of MBSP-C is assumed but cannot be guaranteed due to the use of 

archival data.  The school district did not retain the completed MBSP-C probe sheets.  As a 

result, scoring accuracy and correct data entry into the data warehouse system could not be 

independently verified.   

 The 2014 PSSA technical manual indicated Geometry as a reported domain, but no 

Geometry scores were reported for PSSA-M administered to third grade students in 2014.  

According to the PSSA technical manual this was due to the transition from the previously-used 

standards to the newly-adopted Pennsylvania Core Standards.  Consequently, PSSA data from 

the 2013-2014 year were excluded from the data set for analysis of PSSA-M Composite score 

and Geometry data, which resulted in smaller sample sizes for these two dependent variables.  

All other scores on the 2014 PSSA-M were comparable to their counterpart scores in the 

previous PSSA-M administrations included in this study.   

 Threats to external validity stem primarily from the use of a convenience sample.  All 

data were collected from the same rural school district in Pennsylvania.  The sample may not be 

representative of the population as a whole, which limits generalizability to more diverse 

populations.  A large majority of the sample population (91% to 93%) were composed of 

students who identify as Caucasian.  It would be beneficial to replicate this study within a 

population that is more diverse and representative of the general population.   

 Students receiving special education services were included in the present study, with the 

exception of those who took the modified format of the PSSA.  This exclusion was intentional 

and because PSSA Mathematics data were not available for students who took the modified 

version of the PSSA.  This means that students with the most severe disabilities were not 
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included in the data set, which could have skewed the results. This has the potential to effect 

generalization of the results to other populations, therefore this exclusion should be noted.  

However, from an application standpoint, it is unlikely educational systems are interested in 

predicting how students with severe disabilities will perform on a test they are not expected to 

take. 

 Other potential limitations stem from curricular changes which have occurred since 

Monitoring Basic Skills Progress was originally published.  The MBSP-C probes were based on 

state standards from two to three decades ago (Fuchs, Hamlett, & Fuchs, 1998, 1999).  During 

that time, there has been a significant change in mathematics curriculums and an increase in 

excepted learning outcomes for students at each grade level.  This suggests MBSP-C may not 

accurately reflect what students are expected to learn throughout the school year as well as more 

recently developed math computation probes.     

 While the idea of basing a universal screening and progress monitoring measure off of 

academic standards certainly has merit, it is likely this measure needs updating to reflect the 

Common Core State Standards (Clarke et al., 2014).  The published normative scores for the 

MBSP-C are also quite dated, having been published in 1999.  Therefore, any school system 

considering the use of MBSP-C as a universal screening tool should seriously consider 

generating local normative data with data from their own student population.  Best practices 

suggest normative data be updated every five to seven years (Stewart & Silberglitt, 2008).  

 Resource availability was determined by whether or not a student received free or 

reduced lunch.  It is important to acknowledge participation in the free or reduced lunch program 

is voluntary and requires parents to complete an application disclosing financial information.  

Therefore, it is likely there are students who would qualify for free or reduced lunch but did not 
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apply to participate in this program.  As a result, it is assumed not all students living in low-

income environments were correctly identified and included in the resource availability 

independent variable.  There is a movement within the field of educational research to move 

away from the use of free or reduced lunch status as an indicator of SES.  The National Forum 

on Educational Statistics (2015) identified three concerns when free or reduced lunch status is 

used as an indicator of SES.  These concerns include inaccurate use and interpretation of free or 

reduced lunch data, limited access to free or reduced lunch status data, and the consideration of 

only household income when determining economic need.   

Recommendations for Future Research 

 Future research is needed to expand upon the findings of this study and more globally, 

universal screening for mathematical deficits.  Several areas of which require further research 

were highlighted by this study and comprehensive literature review.  Topics that appear to be the 

most imperative relate to implementation of universal screening in math and include 

classification accuracy, identification of general outcome measures in mathematics, and gated 

evaluation systems. 

Technical Adequacy and Classification Accuracy 

 Classification accuracy for universal screeners for mathematical deficits has been 

identified as an area which requires more research (Glover & Albers, 2007; VanDerHeyden, 

2010; VanDerHeyden, 2011).  The results of the present study indicate computation probes have 

a strong correlation with performance on the state administered achievement test administered 

two years later, while in third grade.  It is recommended that studies such as this one further the 

usefulness of universal screening data by establishing appropriate cut-off scores for decision-

making purposes.  There is a significant amount of debate in the educational field regarding what 



 

266 

the cut-off is for a student being at-risk for academic failure (Christ & Nelson, 2014; 

VanDerHeyden, 2011).  More research is needed to define this term and give educators some 

practical guidelines for determining at what point is a student really at risk.    

In addition to appropriately identifying students who are at-risk for mathematical deficits, 

systems should also identifying students who are high achieving.  The purpose of MTSS is to 

provide high quality instruction to all students. This primary function of MTSS combined with 

the country’s lagging performance in the STEM fields make it important to consider how 

universal screening can improve the education for high achieving as well as low achieving 

students.  More research is needed to determine if universal screening tools can be used to 

identify underachieving students for intervention but also students who would benefit from 

curriculum acceleration or curriculum compacting and enrichment in STEM.    

General Outcome Measures in Mathematics 

 The results of this study indicate computation probes in first, second, and third grade are 

strongly predictive of third grade mathematical outcomes.  It is recommended that similar studies 

be replicated with more diverse populations across a variety of locations to confirm the findings 

of this present study.   

 General outcome measures in math is an area that requires more research. The majority 

of research regarding universal screening is relatively recent, with most studies having been 

published after 2000 (Shin & Bryant, 2015).  There is a fair amount of research attempting to 

identify the characteristics of students with mathematical deficits, both those identified as having 

a learning disability and those categorized as low achieving.  Common deficits that have been 

observed include poor mathematical computation, weak retrieval of basic math facts, inefficient 

counting strategies, poor number sense, attention deficits, and weaknesses in working memory 
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(Geary, 2004; Geary, et al., 2012; Jordan & Hanich, 2003; Martin et al., 2012).  While the 

correlation between these characteristics and mathematical deficits can vary based on the time of 

administration and student age, it would be a strong starting point to develop general outcome 

measures for the purpose of identifying students who are likely to need additional support in 

mathematics on top of the generic curriculum all students access.   

 Christ and Vining (2006) indicate that curriculum-based computation tools can be used as 

a general outcome measure.  This is supported by the current study, but requires replication 

across a more diverse population and multiple locations.  In order to support the use of 

computation skills as a general outcome measure in mathematics, studies similar to the present 

one should be replicated with computation measures other than MBSP-C and different well-

established criterion measures.   

 Based on the results of this study, MBSP-C demonstrates a moderate predictive 

relationship with performance on PSSA-M subtests with low face validity with computation 

skills.  There is some evidence that computation measures do not correlate highly with 

mathematical outcomes for students at the upper elementary and secondary levels.  However, 

measures of concept and application do correlate with future mathematical outcomes for older 

students (Anselmo, 2014).  Preliminary research using fractions to engage in problem solving 

also correlated highly with future mathematical outcomes (Hansen, Jordan & Rodrigues, 2015).  

More research is needed to confirm initial findings and to determine at what grade-level, 

computation ceases to demonstrate a strong correlation with future math outcomes.   

 Initial findings support the use of computation fluency skills as a general outcome 

measure for mathematical performance, especially in a gated evaluation system.  However, given 

the relatively weak predictive relationship between MBSP-C in the fall of first grade with future 
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mathematical outcomes and questions regarding the appropriateness of computation measures to 

determine the need for additional intervention for older students, more research is recommended 

to determine how computation measures would fit into alterative universal screening models 

such as gated evaluation systems and threshold decision making models. 

Gated Evaluation Systems 

 Gated evaluation is defined the process of “involving multiple assessments that cost 

efficiently identify a subset of individuals from a larger pool of target participants with a 

combination of methods and measures generally arranged in sequential order” (Walker, Small, 

Severson, Seeley, & Feil, 2014, p. 47).  In gated evaluation systems, all students may complete a 

simple, broadband screener.  A small proportion of those students, as identified on the initial 

broadband screener, are gated into the next stage of screening.  In this next stage of the gated 

system, the small number of students complete a narrowband assessment.  This is especially 

relevant when screening for mathematical deficits due to the complexity of mathematical skills.  

 For example, discrete skill measures are generally fluency based and designed to assess 

individual components and specific mathematical skills (Purpura, Reid, Eiland, & Baroody, 

2015).  These measures demonstrate good predictive validity and are sensitive to change over 

time (VanDerHeyden, Broussard, & Cooley, 2006).  Given the moderate to strong predictive 

relationship with overall math achievement, measured by PSSA-M Composite scores, a 

computation measure would be an appropriate tool to use as the first step of a gated evaluation 

model. 

 However, two potential concerns or limitations when discrete mathematical measures are 

used to determine future academic risk were identified.  Fluency-based mathematical measures 

correlate highly with non-math related measures such as reading fluency and school readiness 
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measures (Polognano & Hojnoski, 2012; VanDerHeyden, Broussard, Fabre, Stanley, Legendre & 

Creppell, 2004).  This suggests fluency-based measures are assessing non-mathematical 

constructs in addition to math skills.   These potential limitations were addressed with the use of 

a measure that sampled a broad range of mathematical skills and use of a gated evaluation 

system.   

Automaticity of basic math facts and computation fluency are required for successfully 

engaging in higher level mathematical thinking and problem-solving.  However, proficiency on 

computation measures does not always indicate proficiency with high-level mathematics 

(Locuniak & Jordan, 2008).  Therefore, brief computation probes such as, MBSP-C, may be a 

good option for school systems to use as the first step in a gated evaluation system.  While more 

research is needed, initial findings support gated evaluation procedures as an accurate method for 

identifying students at risk (Albers & Kettler, 2014; Fuchs, Compton, et al., 2011; 

VanDerHeyden, 2010).   

Threshold Decision-Making Models 

Another area which requires additional research is the use of threshold decision-making 

models.  Threshold decision-making models may be considered in populations where a large 

percentage of students are not demonstrating academic proficiency.  Threshold decision-making 

models are prevalent in the medical field but have not yet translated into educational practice.  

Medically, threshold decision-making is used to determine whether screening and/or intervention 

should be initiated based on the probability of being asymptomatic, probability of negative side 

effects for any given age for participation or lack of participation in screening, and probability of 

death (Hoffman et al., 2006).    
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VanDerHeyden (2013) cautioned against universally screening all students when other 

data sources indicate a majority of students are demonstrating academic, emotional, and/or 

behavioral difficulties.  In educational systems that have a large percentage of students identified 

as at risk, universal screening systems are no longer effective and efficient.  Typically, when 

over 20% of the student population is demonstrating a need, it is considered a systemic deficit 

and systemic interventions are recommended.  The use of threshold decision making is promoted 

to take into account contextual factors that impact student outcomes.  In an education setting, 

threshold decision-making would require educators to consider the probability of a false 

negative, probability of a false positive, probability of a false result for students who will not fail 

(specificity), benefit of intervention for students who will fail, risk of intervention for students 

who will not fail, and risk-of-test.   

Potential benefits of this model include less strain on school resources and instructional 

time to conduct universal screenings with all students and decreased risk of flooding Tier 2 

intervention with false positives.  Potential downfalls include loss of universal screening data to 

evaluate the effectiveness of the educational system and potential for false negatives 

(VanDerHeyden, 2013).  Empirical and longitudinal research is needed to determine whether or 

not threshold decision-making is applicable within an educational setting. A student’s socio-

economic status, or resource availability, falls under the purview of contextual factors considered 

when making decisions about universal screening systems. 

Resource Availability  

  The results of the present study suggest resource availability, measured by participation 

in the free or reduced lunch program, has a weak but statistically significant correlation with the 

criterion measure, PSSA-M in third grade.  This weak correlation increases slightly from first to 
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second and second to third grade.  This suggests resource availability becomes a more relevant 

factor the longer students are in school.  However, more research is needed to determine whether 

the impact resource availability continues to increase, plateaus, or begins to decrease.   

The results of the present study suggest resource availability becomes more influential to 

math in the latter years.  Previous research identified the achievement gap between students 

living in low-income households and those in high-income households decreased over the course 

of the school year.  However, deficits were re-established over the summer months (Reardon, 

2013).  It would be beneficial to further explore the findings of Reardon (2013) by providing 

mathematical instruction to students living in low-income environments over the summer months 

to determine whether or not it mitigates regression of mathematical achievement observed in 

students from low-income households over the summer months. 

More research is also needed to determine if the findings of the present study would 

differ if resource availability was determined in a more comprehension manner instead of free or 

reduced lunch status.  The National Forum on Educational Statistics (2015) recommends eight 

alternative measures to be used to determine SES or resource availability.  They are as follows, 

(a) eligibility for other means-tested programs, (b) information provided by the household, (c) 

student or family categorical status, (d) household income, (e) highest level of education 

completed by parent/guardian, (f) parent/guardian occupation, (g) SES of the 

neighborhood/community, and (h) school district poverty estimate.  According to the National 

Forum on Educational Statistics, when these eight factors provide a more meaningful and 

accurate measure of SES than participation in the free or reduced lunch status alone.  It is highly 

recommended future research use these eight factors or a combination of them to determine SES.   
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Implications for Practice 

 As MTSS service delivery models continue to become more prevalent, school 

psychologists play an important role to aid systems in developing efficient and effective methods 

for identifying students at-risk of academic, social, and emotional deficits.  School psychologists 

and educational leadership should advocate for the development of data analysis teams and be 

fluent in analysis of data used by teams at a systemic, small group, and individual level.  As 

members of data analysis teams, school psychologists are able to evaluate and improve programs 

on a systemic, small group, and individual student level with the use of universal screening data.  

In this way, school psychologists play a unique role when determining what tools should be used 

for universal screening and interpretation of universal screening data. 

 When choosing a mathematical universal screening tool, school psychologists should 

advocate for consideration of the following criteria, (a) is it suitable for the proposed use, (b) is a 

good fit for local needs, (c) is aligned with valued criterion, (d) is supported by research, (e) is a 

good fit for the intended population, (f) is able to demonstrate sufficient technical adequacy, (g) 

is user friendly, and (h) the data generated is easily understood and meaningful (Albers & 

Kettler, 2014).    

 If school psychologists are working within a system that chooses to administer 

computation probes as a universally screener, it is important they be well versed in the strengths 

and weakness of this tool.  Advantages of MBSP-C include the low cost, ease of administration 

and scoring, number of alternative probes, technical adequacy, and moderate to high correlations 

with future mathematical outcomes from first through third grade.   

Concerns with MBSP-C include the outdated published normative data.  It is 

recommended local normative data be developed.  School psychologists will need to be capable 
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of producing, analyzing, and distributing this data for use in a clear and understandable manner.  

When developing local normative data, it is recommended the sample consist of a minimum of 

100 students per administration and should be updated every five to seven years (Stewart & 

Silberglitt, 2008).  This may become problematic in small school districts.   

Educational leadership should consider using computation probes as the first gate in a 

gated evaluation system.  Students who demonstrate low performance on the computation probe 

would move to a second gate evaluation, such as a curriculum-based evaluation (CBE).  CBE is a 

process used to identify specific skill deficits in order to drive instruction and intervention.  CBE 

is defined as, “a problem-solving process used to determine what to teach and how to teach” 

(Kelley, 2008, p. 423).  The first step of a CBE is problem identification.  Followed by 

hypothesis generation, problem analysis, plan development, and implementation (Howell, Hosp, 

& Kurns, 2008; Kelley, 2008).       

 Sex and resource availability made negligible contributions to the total variance in PSSA-

M Composite and subtest performance.  It is recommended that these data are neither collected 

nor considered as part of universal screening procedures.  However, school psychologists and 

educational leadership should remain current regarding future research related to the impact of 

resource availability on mathematical learning outcomes in order to revisit their universal 

practices as more information becomes available. 

 It is also recommended that school psychologists and educational leadership continue to 

review research regarding general outcome measures in mathematics as more becomes known 

about the relationship between early numeracy skills, computation skills, and concept and 

application skills as students advance through school.  It is important to understand how these 

tools relate to future mathematical learning outcomes to inform decisions regarding universal 
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screening models and the data generated by these tools.  When evaluating measures to utilize as 

universal screeners in mathematics, it is critical to remain focused on the purpose of these tools.  

It is meaningless to be able to very accurately and efficiently identify students in need of 

intervention if nothing is done with this information.  Students need to have access to high 

quality math instruction within Tier 1, and supplemental intervention in Tiers 2 and 3.  This 

continues to be an area of need in which school psychologists are able to provide guidance and 

evaluate program effectiveness on a systemic level.   

Summary 

 The findings of this study support the use of computation measures as universal screening 

tool for students in first through third grade.  MBSP-C probes in the fall, winter, and spring of 

first, second, and third grade demonstrate moderate to strong correlations with performance on 

the PSSA-M administered in the spring of third grade.  Sex and resource availability had little 

impact on the overall variance accounted for in the prediction model as determined by multiple 

linear regression analyses and Pearson correlations.   

 This chapter highlighted the results of the statistical analysis and acceptance or rejection 

of the hypotheses.  This discussion was followed by limitations to this study, which stem 

primarily from the use of a convenience sample and archival data.  The use of a convenience 

sample impacts generalizability because the population lacked diversity.  The use of archival 

data did not allow for control of administration procedures, scoring, data entry, and quality of 

math instruction.  Study limitations were followed by suggestions for addition research and 

implications for school psychologists.  Additional research and implications for school 

psychologists focus on the development and use of general outcome measures for math, technical 

adequacy of universal screening tools, and gated evaluation systems.  
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Appendix A 

Institutional Review Board for the Protection of Human Subjects 
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Appendix B 

Standardized Directions for MBSP-C Probe 
 

It is time to take your math test.  As soon as I give you your test, write your first 

name, your last name, and the date.  After you have written your name and date on the 

test, turn your paper over and put your pencil down so I will know you are ready.   

I want you to do as many problems as you can.  Work carefully and do the best you 

can.  Remember, start at top left.  Work from left to right.  Some problems will be easy for 

you; others will be harder.  When you come to a problem you know you can do, do it right 

away.  When you come to a problem that’s hard, skip it and come back to it later.   

Go through the entire test doing the easy problems.  Then go back and try the 

harder ones.  Remember, you might get points for getting part of a problem right.  So, after 

you’ve done all the easy problems, try the harder problems.  Try to do each problem even 

if you think you can’t get the whole problem right. 

When I say, “Begin”, turn your test over and start to work.  Work for the whole test 

time.  You should have enough room to do your work in each block on the page.  Write 

your answers so I can read them!  If you finish early, check your answers.  At the end of 

_____ minutes, I will say “Stop.”  Put your pencil down and turn your test face down.   
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Appendix D 

First Grade Boxplots for the Identification of Outliers 
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Appendix E 

Second Grade Boxplots for the Identification of Outliers 
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Appendix F 

Third Grade Boxplots for the Identification of Outliers 
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